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A DEGENERATION FORMULA OF
GW-INVARIANTS

JUN LI

Abstract
This is the sequel to the paper [23]. In this paper, we construct the virtual
moduli cycles of the degeneration of the moduli of stable morphisms con-
structed in [23]. We also construct the virtual moduli cycles of the moduli
of relative stable morphisms of a pair of a smooth divisor in a smooth vari-
ety. Based on these, we prove a degeneration formula of the Gromov-Witten
invariants.

0. Introduction

This is the second part of the project initiated in [23].
Like Donaldson invariants of 4-manifolds, Gromov-Witten invariants

are intersection theories on the moduli spaces of stable morphisms to
varieties or symplectic manifolds. Unlike the Donaldson invariants, in
this case one needs to use virtual intersection theories to define the
Gromov-Witten invariants: namely, the intersection theories defined via
virtual moduli cycles. Such cycles were first constructed by Tian and the
author [25, 26] for algebraic varieties, and an alternative construction
was achieved by Behrend-Fantechi [2, 3]. Gromov-Witten invariants of
general symplectic manifolds were developed in [32, 31, 6, 27, 33, 34]
and the equivalence of these constructions were proved in [28, 35, 19].
The goal of this project is to prove a degeneration formula of the

Gromov-Witten invariants in algebraic geometry. This is the analogy
of the Donaldson-Floer theory in gauge theory. Such a degeneration
theory (for Gromov-Witten theory) was investigated by several groups
using analysis [5, 14, 15, 24, 37].
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Here is the situation we will study in this paper. Let W → C be a
family of projective schemes over a smooth pointed curve 0 ∈ C so that
the total space W is smooth, the fibers Wt over t �= 0 ∈ C are smooth
varieties and the special fiber W0 has two smooth irreducible compo-
nents Y1 and Y2 intersecting transversally along a connected smooth
divisor D ∈ W0. We will call Y rel

i � (Yi, Di), where Di = D ⊂ Yi, the
relative pairs after decomposing W0. In this paper, we will construct
the Gromov-Witten invariants ofWt for all t ∈ C. We will construct the
relative Gromov-Witten invariants of the relative pairs Y rel

i � (Z,D).
We will prove that the Gromov-Witten invariants of Wt are locally con-
stant for t ∈ C. Finally we will prove a degeneration formula relating
the Gromov-Witten invariants of W0 with the relative Gromov-Witten
invariants of Y rel

1 and Y rel
2 , one in cycle form and the other in numerical

form.
The first part of this paper is devoted to constructing the Gromov-

Witten invariants of the singular scheme W0. This is based on the
moduli of relative stable morphisms to W/C, constructed in the first
part of this project [23]. Recall that there we constructed a stack W

that includes all expanded degenerations ofW . We then introduced the
notion of prestable, predeformable and stable morphisms toW. We let Γ
be the triple consisting of the genus, the number of marked points and
the degree of the stable morphisms. We then constructed the moduli
space M(W,Γ) of stable morphisms to W of topological type Γ and
proved that it is a Deligne-Mumford stack, separated and proper over C.
Applying parallel construction to a relative pair Zrel (of a smooth divisor
D in a smooth variety Z) we constructed the stack of expanded relative
pairs Zrel. We then defined the notion of relative stable morphisms to
Zrel and showed that the moduliM(Zrel,Γ′) of relative stable morphisms
to Zrel with topological type Γ′ is also a separated and proper Deligne-
Mumford stack. Here Γ′ is the topological type of the relative stable
morphisms, to be explained momentarily.
In this paper, we first construct the standard obstruction theory of

M(W,Γ), M(W0,Γ) = M(W,Γ) ×C 0 and M(Zrel,Γ′). We then show
that they are all perfect, thus allow us to construct their respective
virtual moduli cycles. Based on the virtual moduli cycle [M(W0,Γ)]virt,
we define the Gromov-Witten invariants of W0

ΨW0
Γ : H∗(W0)×k × H∗(Mg,k) −→ Q

in the standard way, where Γ = (g, k,A). Similarly, for Zrel we define
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its relative Gromov-Witten invariants

ΨZ
rel

Γ′ : H∗(Z)×k × H∗(MΓo) −→ H∗(Dr)

to be

ΨZ
rel

Γ′ (α, β) = q∗
(
ev∗(α) ∪ π∗Γ′(β) [M(Zrel,Γ′)]virt

) ∈ H∗(Dr).

Here k (resp. r) is the number of ordinary (resp. distinguished1 ) marked
points of the domain curves, ev is the evaluation morphism associated
to the ordinary marked points, q : M(Zrel,Γ′) → Dr is the evaluation
associated to the distinguished marked points and πΓ :M(Zrel,Γ′) →
MΓo is the forgetful morphism, whereMΓo is the moduli of stable nodal
curves2 whose topology is given by the data in Γ′.
The invariants ΨW0

Γ and ΨZ
rel

Γ′ have the expected properties. For
instance, ΨWt

Γ is locally constant for t ∈ C, and ΨZ
rel

Γ′ is invariant under
any smooth deformation of Zrel.
The second part of this paper is to derive a degeneration formula of

the Gromov-Witten invariants associated to the (degeneration) fam-
ily W . As explained in [23], we expect to have a formula relating
the Gromov-Witten invariants of W0, and hence of Wt, to the rela-
tive Gromov-Witten invariants of Y rel

i . In this paper, we prove such a
degeneration formula:

ΨWt
Γ (α(t), β)

=
∑
η∈Ω/∼

m(η)
|Eq(η)|

∑
j∈Kη

[
ΨY

rel
1

Γ1
(∗1α(0), βη,1,j) •ΨY rel

2
Γ2
(∗2α(0), βη,2,j)

]
0
.

We will explain the notation momentarily. We call the above the de-
generation formula in numerical form. There is a parallel degeneration
formula in cycle form:

[M(W0,Γ)]virt

=
∑
η∈Ω/∼

m(η)
|Eq(η)| Φη∗∆

!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

)
.

The degeneration formula in numerical form is an easy consequence of
the degeneration formula in cycle form.

1The distinguished marked points of the domain of a relative stable morphism f
are mapped to the distinguished divisor D ⊂ Z under f .

2By which we mean nodal curves having no vector fields, not necessary connected.
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We now explain the notation in the degeneration formulas. Let Γ1 be
a topological type of a relative stable morphism f to Y rel

1 . As introduced
in [23], Γ1 is a weighted graph that consists of vertices, ordered legs
and ordered roots. Each leg or root is a line segment with one end
attached to a vertex. Each vertex represents a connected component
of the domain X of f (not necessarily connected), each leg (resp. root)
represents a marked point (resp. distinguished marked point) on X. We
require all distinguished marked points are mapped to D under f . The
vertices (resp. roots) of Γ are assigned weights, representing the degrees
of f along the associated components of X (resp. the contact orders of
f along the normal direction of D ⊂ Z).
We define the evaluation morphism

q1 :M(Yrel
1 ,Γ1) −→ Dr; f 
→ (f(q1), . . . , f(qr))

by evaluating on the distinguished marked points (q1, . . . , qr) of X. Now
let Γ1 and Γ2 be so that they have identical number of roots. Then we
have a pair of evaluation morphisms q1 and q2 and thus can form the
Cartesian product

M(Yrel
1 ,Γ1)×Dr M(Yrel

2 ,Γ2).

Let ∆ :Dr → Dr × Dr be the diagonal morphism. The virtual moduli
cycle of the above Cartesian product is

∆!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

)
.

The set Ω (in the summation above) is the set of all admissible triples
(Γ1,Γ2, I). Here (Γ1,Γ2, I) is admissible if Γ1 and Γ2 are two weighted
graphs associated to two relative stable morphisms that satisfy the fol-
lowing property: First their ordered sets of weighted roots are isomor-
phic. Hence if (f1, f2) is an element inM(Yrel

1 ,Γ1)×Dr M(Yrel
2 ,Γ2) with

Xi the domain of fi, then we can glue the i-th distinguished marked
points (associated to the i-th root) of X1 with the i-th distinguished
marked point of X2 for all i to obtain a new nodal curve X and a
morphism f : X → W0. As part of the requirement, the curve X is
connected of arithmetic genus g and f is a stable morphism of degree
d. Lastly, I is a rule assigning an ordering of the union of the ordinary
marked points of X1 and X2, consistent with their original orderings.
Now let η = (Γ1,Γ2, I) be an admissible triple with r roots. Then any
permutation σ ∈ Sr defines a new element ησ by reordering the roots of
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η according to σ. For η1, η2 ∈ Ω, we say η1 ∼ η2 if η1 = ησ2 for some σ.
The notation Eq(η) appeared in the degeneration formula is the set of
all σ ∈ Sr so that η = ησ.
Let η ∈ Ω/∼, then the above construction associates to every pair

(f1, f2) a stable morphism f in M(W,Γ). This defines a morphism

Φη :M(Yrel
1 ,Γ1)×Dr M(Yrel

2 ,Γ2) −→ M(W0,Γ).

A lemma in [23] asserts that Φη is a local immersion and the degree of
Φη, as morphism to Im(Φη), is |Eq(η)|. Then the degeneration formula
in cycle form asserts that the union of

m(η)
|Eq(η)|Φη∗∆

!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

is the virtual moduli cycle of M(W0,Γ). Here m(η) is the product of
the weights of the roots of η (or of the Γ1 in η).
We now explain briefly the strategy to prove the degeneration for-

mula. Let (1, t) be the pair of the trivial line bundle on M(W,Γ) and
the pullback of a section t ∈ Γ(OC) so that t−1(0) is the origin 0 ∈ C.
Then the virtual moduli cycle [M(W0,Γ)]virt is the intersection

[M(W,Γ)]virt ∩ t−1(0) ∈ A∗M(W0,Γ).

Using the notion of localized top Chern class, this is c1(1,t)[M(W,Γ)]virt.
It turns out that to each η ∈ Ω there associates a pair (Lη, tη) of

a line bundle Lη on M(W,Γ) and a section tη ∈ Γ(Lη) so that 1 ∼=
⊗η∈Ω/∼Lη as line bundles and under this isomorphism t = Πη∈Ω/∼tη.
This says that M(W0,Γ) “virtually” is a union of normal crossing divi-
sors, each associated to an η ∈ Ω and is defined by the vanishing of tη.
This can be seen as follows: Let f ∈ M(W0,Γ) be a general point, say
represented by f :X → W0. Then f1 = f |X1 with X1 = f−1(Y1) defines
a relative stable morphism to Y rel

1 . Similarly we have the induced rela-
tive stable morphism f2 :X2 → Y rel

2 . Let Γ1 and Γ2 be the topological
types of f1 and f2, respectively. The fact that f can be reconstructed
from the pair (f1, f2) provides us a triple η = (Γ1,Γ2, I), which belongs
to Ω. The general points f ∈ M(W0,Γ) that share identical η defines
a closed subset in M(W0,Γ). This set is homeomorphic to t−1η (0). The
miracle is that such closed subset carries a natural closed subscheme
structure, and is in fact defined by the vanishing of a Cartier divisor
(Lη, tη). Further the tensor product of all such (Lη, tη) is the (1, t)
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that defines the moduli stack M(W0,Γ). Then by applying the known
identity of the localized top Chern class, we have

[M(W0,Γ)]virt = c1(1, t)[M(W,Γ)]virt =
∑
η∈Ω/∼

c1(Lη, tη)[M(W,Γ)]virt.

To prove the degeneration formula in cycle form, we need to show
that

c1(Lη, tη)[M(W,Γ)]virt

=
m(η)

|Eq(η)|Φη∗∆
!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

)
.

This is done as follows: First we will show that the vanishing locus
t−1η (0) ⊂ M(W,Γ) is homeomorphic to the image stack of Φη. We
then show that the cycle c1(Lη, tη)[M(W,Γ)]virt is a multiple of the
virtual moduli cycle of M(Yrel

1 ,Γ1)×Dr M(Yrel
2 ,Γ2), endowed with the

obstruction theory induced by the Cartesian product. This leads to the
formula above.
Finally, we explain the notations in the degeneration formula. This

formula is an immediate corollary of the degeneration formula in cycle
form. The only new symbols are i∗, Kη and βη,i,j . First i : Yi → W0

is the inclusion and hence ∗iα(0) is the pullback cohomology. Secondly,
given any η = (Γ1,Γ2, I) ∈ Ω, we can form the moduli space of sta-
ble curves (not necessary connected but with no vector fields) whose
topology are determined by Γi. We denote such moduli space by MΓoi

.
For any pair (C1, C2) ∈ MΓo1

× MΓ0
2
we can glue C1 with C2 pairwise

along all pairs of the i-th distinguished nodes. This defines a morphism
Gη : MΓ0

1
× MΓo2

−→ Mg,k. The terms βη,i,j are terms appear in the
Kunneth decomposition,

G∗η(β) =
∑
j∈Kη

βη,1,j � βη,2,j ,

assuming it exists.
As mentioned in the introduction of [23], the construction of the

moduli stacksM(W,Γ) andM(Zrel,Γ), and the derivation of the degen-
eration formula in this paper will be useful in studying several problems
in algebraic geometry, some related to mathematical physics. Some of
these will be addressed in the future research.
The degeneration formula of Gromov-Witten invariants for sym-

plectic manifolds has been pursued by several groups prior this work.
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(In symplectic setting this is when a smooth symplectic manifold de-
generates to a union of two smooth symplectic manifolds intersecting
transversally, called the symplectic sum.) In [37], Tian studied the sym-
plectic sums for semi-positive symplectic manifolds and showed how to
derive the decomposition formula of the Gromov-Witten invariants in
this setting. Later, A. Li-Ruan [24] worked out a version of the relative
Gromov-Witten invariants and the degeneration formula of Gromov-
Witten invariants for general symplectic manifolds and symplectic sum.
The degeneration formula in numerical form proved in this paper is
analogous to the degeneration formula in [24]. A parallel theory was
developed by Ionel-Parker around the same time [14, 15, 16]. Their
formula works for more general cases and is largely analogous to ours.
It contains a correction term, which is expected to be trivial when the
symplectic sum is along a (holomorphic) divisor. The SFT theory of
Eliashberg-Givental-Hofer [5] is a very general theory part of which can
be interpreted as research along this line. The degeneration formula in
cycle form proved here is new.

This paper consists of five sections. In Section 1, we work out the
obstruction theory of M(W,Γ), M(Zrel,Γ) and other related moduli
stacks. The main result of this section is that the standard obstruction
theories of these moduli stacks are perfect. Section 2 is devoted to
construct the virtual moduli cycles of these moduli stacks. We present
a modified construction of virtual moduli cycles which allow one to
construct such cycles without assuming the existence of global locally
free sheaves that resolve the obstruction sheaves, as assumed in [26]
(and also assumed in [3] but recently removed in [22]). The Gromov-
Witten invariants of W0 and the relative Gromov-Witten invariants of
Zrel are constructed in this section. In Section 3, we constructed the
line bundles with sections (Lη, tη) mentioned in the introduction and
in Section 4 we demonstrate how to derive the degeneration formula,
assuming a series of key lemmas. The last section is devoted to the
proof of these key lemmas. In the Appendix, we give an expression of
the obstruction space of a closed point in M(W,Γ) and in M(Zrel,Γ) in
terms of some known cohomology groups.

1. Deformation theory of log morphisms

In this section we will first recall the notion of morphisms between
schemes with log structures (in short log morphism). We will then
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show that the notion of predeformable morphisms introduced in [23]
is a special class of log morphisms. In the end, we will work out the
deformation theory of log morphisms.

1.1 Predeformable morphisms and log morphisms

Let f :X → W [n] be a flat family of predeformable morphisms over S
with g : S → An+1 the morphism underlying f (cf. [23, §2]). In this
subsection, we will give X and W [n] canonical log structures and show
that f is a morphism between schemes with log structures. We will
then use the sheaf of log differentials to describe the deformation of
predeformable morphisms. All materials concerning schemes with log
structures are drawn from the papers of Kato [17, 18].
We first recall the notion of logarithmic structures (log structures) on

schemes, following [17, 18]. Let X be any scheme with OX its structure
sheaf. We view OX as a sheaf of monoids under multiplication.

Definition 1.1. A prelog structure on X is a homomorphism
α :M → OX of sheaves of monoids, where M is a sheaf of commutative
monoids on the étale site Xet of X. The prelog structure α :M → OX
is said to be a log structure if α induces an isomorphism α :α−1(O×

X)→
O×
X , where O×

X is the subsheaf of invertible elements in OX .
Given a prelog structure, one can construct canonically an associated

log structure αa :Ma → OX , whereMa = (M⊕O×X)/α−1(O×
X) (cf. [18,

§2]). A morphism (X,M)→ (Y,N ) of schemes with log structures is a
pair (f, h) of a morphism f :X → Y and a homomorphism h :f−1(N )→
M that satisfy the obvious commutativity condition: The composite
f−1(N ) → M → OX is identical to f−1(N ) → f−1(OY ) → OX . For
convenience, given a scheme (X,M) with local log structure, we shall
abbreviate it toX† with the local log structureM implicitly understood.
Accordingly, we will abbreviate a morphism (X,M)→ (Y,N ) between
schemes with log structures by f :X† → Y †.
A typical example of a scheme with log structure is the log structure

of a pair (X,D) of a smooth schemeX and a divisorD ⊂ X with normal
crossing singularities (cf. [17, (1.5)]). Let

πn :W [n]→ An+1

be the expanded family constructed in [23, §2]. Recall that W [n] is a
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small resolution ofW ×C C[n] constructed in [23]3 . Then W [n]×A1 0 ⊂
W [n] is a divisor with normal crossing singularities having n + 2 irre-
ducible components. Here An+1 → A1 is the morphism (z1, ..., zn+1) 
→
z1 . . . zn+1. We let W [n]

† and An+1† be W [n] and An+1 endowed with
the log structures induced by their respective pairs

W [n]×A1 0 ⊂ W [n] and An+1 ×A1 0 ⊂ An+1,

Let X† be a log scheme. A chart of X† consists of an étale neigh-
borhood U ⊂ X, a constant sheaf of monoids P and a homomorphism
P → OU so that the associated log structure P a of P is isomorphic to
the log structure on U . We now describe the charts of W [n]†. Recall
that the projection πn is smooth away from n+1 disjoint smooth codi-
mension 2 subvarieties D1, . . . ,Dn+1, indexed so that the component
Dl surjects onto the l-th coordinate hyperplane Hl ⊂ An+1. Let y ∈ Dl

be any point. A chart of W [n] along y consists of a pair (W, ψ), where
W is a Zariski open subset of y ∈ W [n] and ψ is a smooth morphism

ψ :W −→ Speck[w1, w2]⊗k[tl] Γ(A
n+1) � Θl(1.1)

so that the canonical projections W → An+1 is the composite of ψ
with the projection Θl → An+1. Here the two projections in the fiber
product are defined via tl 
→ w1w2 and by viewing tl as the l-th standard
coordinate variable of An+1. Let N2 → OW be the homomorphism of
monoids4 defined by ei 
→ ψ∗(wi) and let Nn+1 → OAn+1 be defined via
el 
→ tl. We then form the product N2 ×Nl N

n+1 where Nl ≡ N, Nl → N2

is defined by e 
→ e1 + e2 while Nl → Nn+1 is the inclusion as the l-th
copy in Nn+1. Because of the relation tl 
→ w1w2, the homomorphism

N2 ×Nl Nn+1 −→ OW(1.2)

induced by N2 → OW and Nn+1 → OAn+1 → OW defines a preloga-
rithmic structure on W. This defines a chart of W [n]† near y ∈ Dl.
Similarly, the log structure of An+1 is given by the homomorphism
Nn+1 → OAn+1 via el 
→ tl.

3We first fix an étale C → A1 so that 0 ∈ C is the only point over 0 ∈ A1. We
then form C[n] = C ×A1 An+1, where An+1 → A1 is defined via (ti) �→ t = Πti. The
family W [n]/C[n] has the property that it has smooth total space, its fibers have
only normal crossing singularities and the fibers of W [n] are either Wt for t �= 0 ∈ C
or unions of Y1, Y2 and copies of a ruled variety ∆. Finally the G[n] = GL(1)×n

action on An+1 via (ti)
σ = (σ1t1, σ

−1
1 σ2t2, . . . , ) lifts to a unique action on W [n].

4We will denote by N the additive monoid of nonnegative integers, and by Nk the
direct product monoid with standard generators e1, . . . , ek.
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Now let f :X → W [n] be a flat family of predeformable morphisms
over S, defined in [23, §2]. Out next step is to show that we can
endow X/S with a log structure so that f becomes a morphism be-
tween schemes with log structures. We will use the following convention
throughout this paper. We call p :U → V an étale neighborhood of the
family X/S if U and V are étale neighborhoods of X and S, respectively,
such that the diagram

U −−−→ X
p

� π

�
V −−−→ S

(1.3)

is commutative.

Definition 1.2. Let π :X → S be a flat family of nodal curves and
let x ∈ X be a node of the fibers of the family X/S. A chart of the nodes
of X/S near x consists of an affine étale neighborhood p :U → V of X/S
near x, two regular functions z1 and z2 ∈ Γ(OU ) and a regular function
s ∈ Γ(OV) satisfying z1z2 = p∗(s) such that the homomorphism

φ : k[z1, z2]⊗k[s] Γ(OV) −→ Γ(OU )(1.4)

is an étale homomorphism, that {z1 = z2 = 0} ⊂ U is connected and
that the induced homomorphism

φ̂ :
(
k[z1, z2]⊗k[s] Γ(OV)

)̂ −→ Γ(OU )̂

is an isomorphism.

A few remarks are in order. First φ is defined by viewing z1, z2
and s on one hand as formal variables and on the other hand as regular
functions. This should cause no confusion since their roles are clear
from the context. Also, the homomorphism k[s] → k[z1, z2] is defined
by s 
→ z1z2. As a convention, in this section we will use L̂ and ĥ (or
Lˆ and h )̂ to denote the I-adic completion of the ring L and the image
of h ∈ L under the homomorphism L → L̂, assuming I = (z1, z2) is an
ideal of L.

Lemma 1.3. Let π :X → S be a flat family of nodal curves and
let x ∈ X be a node in Xy, where y = π(x). Then there exists a chart
of the nodes of X/S near x.

Proof. The proof is straightforward and will be omitted. q.e.d.
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We next recall the notion of morphisms of pure contact and prede-
formable morphisms. Let f :X → W [n] be a flat family of morphisms
over S. We let ξ ∈ X be a node of the fibers of X/S so that f(ξ) ∈ Dl

for some l. (Such nodes are called the distinguished nodes.) We let
(U/V, φ) be a chart of the node ξ of X/S, as in Definition 1.2, and let
ψ :W → W [n] be a chart of f(ξ) as in (1.1) so that f(U) ⊂ W. We
let fU = f |U : U → W. As mentioned, we denote by Â the (z1, z2)-
adic (resp. (s)-adic) completion of A in case A is a k[z1, z2]-algebra
(resp. k[s]-algebra).

Definition 1.4. Let the notation be as before. We say f is for-
mally of pure contact of order m at ξ (or is predeformable at ξ) if there
is an étale chart U/V of ξ ∈ X/S and a chart W of f(ξ) so that the
induced homomorphism

f̂∗U : k[w1, w2]→
(
k[z1, z2]⊗k[s] Γ(OV)

)̂
has the property that there are units ĥ1, ĥ2 ∈ (

k[z1, z2] ⊗k[s] Γ(OV)
)̂

satisfying ĥ1ĥ2 ∈ Γ̂(OV) so that, possibly after exchanging w1 and w2,
f̂∗U (wi) = ĥiz

m
i . We say f is of pure contact of orderm if there are charts

as before and units h1, h2 ∈ k[z1, z2]⊗k[s]Γ(OV) satisfying h1h2 ∈ Γ(OV)
such that, possibly after exchanging w1 and w2, f∗U (wi) = zmi hi.

The notion of pure contact of order m was defined in [23, Definition
2.3]. We have the following facts whose proof can be found in the
Appendix.

Lemma 1.5. The notion of pure contact is independent of the
choice of the charts of the nodes of U/V.

Lemma 1.6. Let the notation be as in Definition 1.4. Then f is
of pure contact at ξ if and only if it is formally of pure contact at ξ.

Let f : X → W [n] be a predeformable morphism over S. We now
define the induced log structure on X/S. We begin with charts of f .
Let x ∈ X be any closed point so that f(x) �∈ D. Here D is the union
of all Dl. A chart of f near x is a triple (Uα/Vα,Wα, fα) of an étale
neighborhood Uα/Vα of x ∈ X , a Zariski neighborhood Wα ⊂ W [n]−D
and fα = f |Uα so that fα(U) ⊂ Wα. Charts of this type will be called of
the first kind. Next let x ∈ X be a distinguished node of X/S, namely
f(x) ∈ Dlα for some lα. We pick a chart (Wα, ψα) of f(x) ∈ W [n]
with ψα as in (1.1). Because f is predeformable, by Lemma 1.6 we can
find a chart of the nodes of X/S near x, say given by (Uα/Vα, φα) as
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in Definition 1.2, so that Uα → X → W [n] lifts to fα :Uα → Wα, and
further there are units hα,1, hα,2 ∈ Γ(OUα)×, elements gα,1, . . . , gα,n+1 ∈
Γ(OVα) and an integer mα so that

hα,1hα,2 ∈ Γ(OVα), f∗α(wα,i) = zmαα,i hα,i and f∗α(tj) = gα,j(1.5)

for i = 1, 2 and j = 1, . . . , n + 1.5 Here we comment that we will
not distinguish wα,i (resp. zα,i) with ψ∗α(wα,i) (resp. φ∗α(zα,i)). In other
words, we will view wα,i ∈ OWα (resp. zα,i ∈ OUα). Similarly we will
view tl ∈ OW [n] via the pullback OAn+1 → OW [n]. Note that since
wα,1wα,2 = tlα and zα,1zα,2 = sα, we must have

gα,lα = smαα (hα,1hα,2).(1.6)

We will call such triplet (Uα/Vα,Wα, fα) with (φα, ψα) understood a
chart of f of the second kind.

Simplification 1.7. In case (Uα/Vα,Wα, fα) is a chart of the
second kind, for simplicity we assume hα,1 ≡ hα,2 ≡ 1. This is possible
possibly after an étale base change of Uα/Vα.
We now cover X by charts of f , say (Uα/Vα,Wα, fα) indexed by

α ∈ Λ, of the first or the second kinds satisfying the Simplification 1.7.
Let α be a chart of the second kind with φα and ψα understood. We
then letM0

α = N2 (resp. N0
α = N) and letM0

α → OUα (resp. N0
α → OVα)

be the prelog structure defined by eα,i 
→ zα,i (resp. eα 
→ sα). Note
that N0

α → M0
α defined by eα 
→ eα,1 + eα,2 makes the projection Uα →

Vα a morphism between schemes with (their respective associated) log
structures. We now define the desired log structures on S. Let ξ ∈ S be
any closed point and let Xξ be the fiber of X over ξ with Σ = f−1(D)∩Xξ
be the set of distinguished nodes of Xξ. We let Λ0 be a collection of
α ∈ Λ so that {Uα}α∈Λ0 covers a neighborhood of Xξ ⊂ X . We then
let Kl be those α so that f−1(Dl) ∩ Uα �= ∅. We let K be the union of
K1, . . . ,Kn+1. By eliminating redundant α from Λ0 we can assume that
each node of Xξ ∩ f−1(Dl) is covered by at most one α ∈ Kl. We then
pick an étale neighborhood V of ξ ∈ S so that V → S factor through
Vα → S for all α ∈ Λ0. For each l ∈ [n+ 1] we let N l = ⊕α∈KlN0

α and
let Nl be the quotient (monoid) of N l by the relations mαeα = mβeβ for
all pairs α, β ∈ Kl. In case Kl = ∅, we agree Nl = N l = N. Note that
for α ∈ Kl the homomorphism N l → OVα defined by eα 
→ sα and the

5By this we mean it is in the image of the pullback homomorphism Γ(OVα) →
Γ(OUα).
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pullback OVα → OV descends to a homomorphism Nl → OV , because
of the relations (1.5) and (1.6). When Kl = ∅, we define Nl → OV via
e 
→ g∗(tl). We define the prelog structures NV and NV on V to be the
ones given by the direct sums

NV � ⊕n+1
l=1 Nl −→ OV and NV � ⊕n+1

l=1 N l −→ OV .(1.7)

We denote by NV and N V the associated log structures on V.
We next define the desired prelog structure on Uα. By replacing

Uα by Uα ×Vα V, we can assume Vα = V. Accordingly we let Nα and
Nα → OV be that induced by NV and NV . Now let l be so that
α ∈ Kl. Recall that Uα has a prelog structure given by M0

α → OUα . Let
N0
α → M0

α be as before (defined by eα 
→ eα,1+ eα,2). Then we have the
obvious homomorphism

Mα =M0
α ×N0

α
N l ⊕ (⊕l′ �=lN l′

) −→ OUα(1.8)

and

Mα =M0
α ×N0

α
Nl ⊕ (⊕l′ �=lNl′) −→ OUα .(1.9)

Here M0
α ×N0

α
N l → OUα is induced by M0

α → OUα and N l → OVα →
OUα whileN l′ → OUα is the composite of Nl′ → OVα → OUα . The arrow
in (1.9) is defined similarly. They define two prelog structures on Uα.
We let Mα → OUα and Mα → OUα be the associated log structures.
Note that the obvious Nα → Mα and Mα → Nα make the projection
Uα → Vα a morphism between schemes with respective log structures.

Proposition 1.8. The log structures (Uα,Mα) and (Vα,Nα) patch
together to form log structures M on X and N on S. The same con-
clusion holds for (Uα,Mα) and (Vα,Nα). The collection of homomor-
phisms Nα → Mα makes X † ≡ (X ,M) a log scheme over S† ≡ (S,N ).
Further, the morphism f is naturally a morphism between schemes with
log structures X †/S† → W [n]†/An+1†.

Proof. The fact that the so defined log structures on Uα and Vα
patch together to form log structures on X and S is obvious. We now
study the morphism f . We first investigate the morphism g :S → An+1

underlying f . Let ξ ∈ S be any closed point with (V, NV) a chart
of S†, constructed before. Recall that the log structure on An+1† is
given by the prelog structure Nn+1 → Γ(An+1) via el 
→ tl. To show
g|V :V → An+1 is a morphism between schemes with log structures we
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need to define a homomorphism Nn+1 → NV that satisfies the obvious
compatibility condition. By definition NV = ⊕lNl and Nl is N in case
Kl = ∅ and is the quotient of N l = ⊕α∈KlN0

α otherwise. In the first
case we define N → Nl to be the unique isomorphism. In the later case
we let N → Nl be induced by 1 
→ mαeα ∈ Nl for some α ∈ Kl. By the
definition of Nl such definition is independent of α ∈ Kl. The desired
homomorphism Nn+1 → NV is the direct sum of these n + 1 copies
N → Nl. It is direct to check that this defines V → An+1 a morphism
between schemes with log structures. By working over a covering of S,
one sees that g is a morphism between S† → An+1†.
The proof that f a morphism between X † and W [n]† and is com-

patible to g : S† → An+1† is similar, relying on the relations (1.5) and
(1.6) and the assumption that all hα,i ≡ 1. This completes the proof of
the proposition. q.e.d.

We conclude this subsection by noting the equivalence of the de-
formations of predeformable morphisms and the deformations of log
morphisms.

Definition 1.9.

1. A log extension of (Vα,Nα) by I consists of an extension Ṽα of Vα
by I as schemes, and an extension Nα → OṼα of Nα → OVα . We
denote such extension by (Ṽα, Ñα).

2. A flat log extension of (Uα/Vα,Mα/Nα) by I consists of an ex-
tension (Ṽα, Ñα) of (Vα,Nα) by I, a flat extension Ũα → Ṽα of
Uα → Vα and an extension Mα → OŨα of the prelog structure
Mα → OUα of which the following holds: a. The projection
Ũα → Ṽα is a log morphism under the given Nα → Mα; b. Away
from the distinguished nodes of Uα the prelog structureMα → OŨα
is the pullback of Nα → OṼα ; c. Near the distinguished nodes in
Uα the projection Ũα → Ṽα is log smooth.

We have the following lemma which says that extending f as a pre-
deformable morphism is equivalent to extending f as a log morphism.

Lemma 1.10. Let f : X/S → W [n]/An+1 be as before with the
canonical log structures understood. Let S̃ ⊃ S be an extension of S.
Suppose S̃† is a log extension of S, X̃ † → S̃† is a flat log extension of
X/S and f̃ : X̃ †/S̃† → W [n]†/An+1† is an extension of f as log mor-
phism. Then f̃ is a predeformable extension of f and the log structures
on X̃/S̃ induced by f̃ coincide with the log structure of X̃ †/S̃†.
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Proof. The proof is straightforward and will be omitted. q.e.d.

1.2 Deformation of predeformable morphisms

The goal of this subsection is to work out the deformation theory of pre-
deformable morphisms. Based on the equivalence lemma, it is natural
to work out the deformation theory of predeformable morphisms in the
frame work of log morphisms. However, the deformation theory of log
morphisms worked out in [17, 18] deal with the question on how to ex-
tend families over S† to S̃†. In our situation, the log structure on S for
a predeformable family f :X/S → W [n]/An+1 relies on the morphism
f . Hence for any extension of base S ⊂ S̃ the extension of log structure
to S̃ is part of the extension problem. Hence the deformation theory of
Kato [18] can not be applied directly. In this subsection, we will work
with the deformation of predeformable directly.
Our construction of the obstruction theory is elementary. We first

show that locally there are no obstruction to extending predeformable
morphisms. We then identify the space of all such deformations. After
that, it is standard to express the obstruction to the deformation of
(global) predeformable morphisms as a cohomology class in a cohomol-
ogy of a complex built out of a Cěch complex. In the end, we check that
this complex is a perfect complex.
We begin with recalling some basic notion in deformation theory.

Our treatment follows [1, 26]. Let A be an A-algebra. We let TriA/A
be the category whose objects consists of are all triples (B, I, ϕ) where
B are A-algebras, I are ideals of B such that I2 = 0 and ϕ are A-
homomorphisms A → B/I. Let ξ = (B, I, ϕ) and ξ′ = (B′, I ′, ϕ′) be
two objects in TriA/A. A morphism from ξ to ξ′ consists of an A-
homomorphism r : B → B′ so that r(I) ⊂ I ′ and ϕ′ = ϕ ◦ r0 where
r0 :B/I → B′/I ′ is the induced homomorphism. We let ModA be the
category whose objects are pairs (B, I) where B are A-algebras and
I are B-modules. Morphisms from (B, I) to (B′, I ′) are pairs (r, r̃)
where r :B → B′ are A-homomorphisms and r̃ are B-homomorphisms
I → I ′. We let Mod∗A be the category whose objects are (v,B, I) where
(B, I) ∈ Ob(ModA) and v ∈ I. Morphisms from (B, I, v) to (B′, I ′, v′)
are pairs (r, r̃) as in ModA so that r̃(v) = v′.
We define DefA/A :TriA/A → (Sets) be the functor that associates to

any ξ = (B, I, ϕ) the set of all A-homomorphisms A → B extending ϕ :
A → B/I. (In case A is understood, we will omit the subscript A.) It is
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known that under some mild conditions [36] this set admits B/I-module
structures. Once this is the case, then after fixing a reference element
a ∈ DefA(ξ) we can give DefA(ξ) a natural B/I-module structure. In
particular, if B = B/I ∗ I, which is the trivial extension of B/I by the
module I, then DefA(ξ) contains the trivial extension B → A induced
by B = B/I ∗ I → B/I → A. Using this as the reference element, we
obtain a canonical module structure on DefA(ξ). Note that there is a
natural functor ModA → TriA/A that sends (B, I) to (B ∗ I, I, ϕ) where
ϕ :A → B is the obvious homomorphism. We let Def1A :ModA → ModA
be the composite of ModA → TriA/A with DefA. We call Def1A the
functor of the first order deformations.
Now let E• be any complex of A-modules. For any integer i the

i-th cohomology of E• defines a functor hi(E•) :ModA → ModA via
(B, I) 
→ (B, hi(E• ⊗A I)).

Definition 1.11. Let S = SpecA be an affine scheme over T =
SpecA. A perfect obstruction theory of S/T consists of a two term
complex of finitely generated free A-modules E• = [E1 → E2] (indexed
at [1, 2]) and an obstruction assignment ob taking value in the second
cohomology of E• of which the following hold:

1. The functor Def1 is isomorphic to the functor h1(E•).

2. For any triple (B, I, ϕ) ∈ Ob(TriA/A), the element

ob(B, I, ϕ) ∈ h2(E•)(I) = h2(E• ⊗A I)
is the obstruction class to extending ϕ : A → B/I to an A-
homomorphism A → B.

3. The obstruction assignment

(B, I, ϕ) 
→ (B, h2(E• ⊗A I), ob(B, I, ϕ))
is a functor from TriA/A to Mod∗A. Namely it satisfies the base
change property.

A few remarks are in order here. First, in [26], we only consid-
ered the case where T = Speck. Here we need to study the relative
case for the proof of the degeneration formula. When T = Speck,
we will omit T from the notation. When T is nontrivial, we will call
the obstruction theory so defined the relative obstruction theory. Sec-
ondly, when we restrict to the subcategory of all triples (B, I, ϕ) so
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that B are Artin local rings with residue fields k, then the above data
is the obstruction theory to deforming ϕ(Speck) in S. Thirdly, since
HomA(ΩA/A⊗AB/I, I) is canonically isomorphic to Def1

A/A
((B, I)), we

have ker{E2∨ → E1∨} ∼= ΩA/A. Lastly, in the definition we can replace
E• by its associated complex of sheaves of OSpecB-modules and modify
the wording accordingly. This is convenient if we work with obstruction
of schemes or stacks. We will call h2(E•) the obstruction module and
call its associated sheaf (of OSpecB-modules) obstruction sheaf.
We now investigate the deformation theory of predeformable mor-

phisms to W [n]. Let Γ be the data (g, k, b) representing the genus, the
number of marked points and the degree of the maps. Recall that a
morphism f :X → W [n] is said to be stable as morphism toW if f is an
ordinary stable morphism, it is predeformable along the nodal divisors
of the fibers of W [n]/An+1 and Aut(f) is finite. Here Aut(f) consists
of all pairs (a, b) with a :X ∼= X and b ∈ G[n] so that f ◦ a = b ◦ f ,
where b :W [n]→ W [n] is the automorphism defined by the G[n]-action
on W [n]. We letM(W [n],Γ)st be the moduli space of stable morphisms
to W [n] of prescribed topological type that are also predeformable as
morphisms to the family W [n]/C[n] and are stable as morphisms to the
stack W.
As argued in Section 2 in [23], it is a Deligne-Mumford stack and it

comes with a tautological morphism

M(W [n],Γ)st −→ M(W,Γ).

In the remainder of this section, we will cover M(W [n],Γ)st by affine
étale charts and construct canonical obstruction theory of each of these
charts. The obstruction theory of M(W,Γ) will be the descent of the
obstruction theory of M(W [n],Γ)st. Since this study is local, during
our study we are free to shrink an open chart S → M(W [n],Γ)st if
necessary.
In the remainder of this subsection we fix an affine étale chart S →

M(W [n],Γ)st with f :X → W [n] its universal family. We let S = SpecA
and let D ⊂ X be the divisor of the union of all marked sections of X/S.
We fix a collection of charts (Uα/Vα, fα) of f that covers X satisfying
the simplification assumption. In case α is a chart of the second kind,
we will reserve the symbols Wα, zα,i, wα,i, φα, ψα, mα and lα for the
data associated to the chart α. Our first task is to show that locally
there are no obstruction to extending predeformable morphisms fα.
We begin with the notion of flat extensions of an étale neighborhood

Uα/Vα. Let I be an A-module with Iα = I ⊗A OVα . We say Ṽα is an
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extension of Vα by I if Vα ⊂ Ṽα is a subscheme with the ideal sheaf
Ĩ of Vα ⊂ Ṽα satisfying (Ĩ)2 = 0 and the resulting OVα-modules Ĩ is
isomorphic to Iα. We say Ũα/Ṽα is a small extension of Uα/Vα by I
if Ṽα is an extension of Vα by I and Ũα is a flat extension of Uα over
Ṽα. Now let Ũα/Ṽα be an extension of Uα/Vα by I. We first consider
the case where α is a chart of the second kind. By Lemma 1.6, we can
assume that the φα of Uα/Vα in (1.4) is extended to φ̃α of Ũα/Ṽα. We
say an extension f̃α : Ũα → W [n] of fα :Uα → W [n] is a predeformable
extension if Ũα → W [n] → An+1 factor through Ṽα → An+1 and if the
family f̃α : Ũα → W [n] is predeformable along Dlα .
We now define the space HomUα(f∗ΩW [n], I)† that will parameterize

all such extensions. The group HomUα(f∗ΩW [n], I)† is the set of triples

(ϕ, η1, η2) ∈ HomUα(f∗ΩW [n], Iα)⊕ I⊕2α , Iα = I ⊗A OUα(1.10)

that obey the following condition:

ϕ(f∗dwα,i) = f∗(wα,i) · ηi, ϕ(f∗dtl) ∈ Iα and η1 + η2 ∈ Iα(1.11)

for i = 1, 2 and l = 1, . . . , n+1. Here Iα = I⊗AOVα . Since fα(Uα) ⊂ Wα

and wα,i ∈ Γ(OWα), f∗dwα,i ∈ f∗ΩW [n] ⊗OX OUα and hence ϕ(f∗dwα,i)
makes sense. Note also that because tlα = wα,1wα,2, from (1.11) we
have

smαα (η1 + η2) = ϕ(f∗dtlα).(1.12)

Clearly, HomUα(f∗ΩW [n], I)† is an A-module and is A-flat if I is A-flat.
When α is a chart of the first kind, we define HomUα(f∗ΩW [n], I)†

be the subgroup of ϕ ∈ HomUα(f∗ΩW [n], Iα) such that ϕ(dtl) ∈ Iα for
all l. Note that in case α and β are two charts of f and pα : Uαβ �
Uα ×X Uβ → Uα is the projection, then there is a canonical restriction
A-homomorphism

p∗α : HomUα(f
∗ΩW [n], I)

† −→ HomUαβ (f
∗ΩW [n], I)

†.

We now state and prove the following local deformation lemma.

Lemma 1.12. Let Ũα/Ṽα be an extension of Uα/Vα by I. Then
fα automatically extends to a predeformable morphism f̃α : Ũα → W [n].
Further, after fixing one such extension, say f̃ ′α, the space of all such
extensions is canonically isomorphic to the space HomUα(f∗ΩW [n], I)†.
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Proof. We will consider the case where α is a chart of the second
kind. The other case is simpler. First, we extend φα to a parameter-
ization φ̃α of Ũα/Ṽα with z̃α,i and s̃α the corresponding extensions of
zα,i and sα, respectively. We consider the composite ψα ◦ fα :Uα → Θlα ,
where Θlα is defined in (1.1). Let hα,i ≡ 1 ∈ Γ(OUα) and gα,l ∈ Γ(OVα)
be part of the definition of the chart of fα, as in (1.5) and (1.6). Since
both Uα and Vα are affine, we can extend hα,i and gα,l to h̃α,i ∈ Γ(OŨα)
and g̃α,l ∈ Γ(OṼα), respectively, so that h̃α,1h̃α,2 ∈ Γ(OṼα) and g̃α,lα =
s̃mαα (h̃α,1h̃α,2). We then define F : Ũα → Θlα by wα,i 
→ z̃mαα,i h̃α,i and
tl 
→ g̃α,l. Since Wα → Θlα is smooth, we can lift F to an extension
f̃α : Ũα → W [n] of fα. Namely, f̃α is an extension of fα such that
ψα ◦ f̃α = F . The morphism f̃α is a desired extension.
Now let f̃ ′α be a fixed predeformable extension of fα to Ũα/Ṽα. Let

f̃α be any predeformable extension of fα. As morphisms from Ũα to
Θlα , ψα ◦ f̃α is defined by

(ψα ◦ f̃α)∗(wα,i) = z̃mαα,i h̃α,i and (ψα ◦ f̃α)∗(tl) = g̃α,l(1.13)

and ψα ◦ f̃ ′α is defined by

(ψα ◦ f̃ ′α)∗(wα,i) = z̃mαα,i h̃
′
α,i and (ψα ◦ f̃ ′α)∗(tl) = g̃′α,l.(1.14)

We let ηi = h̃α,i − h̃′α,i ∈ Iα. Then η1 + η2 ∈ Iα since h̃α,1h̃α,2 and
h̃′α,1h̃′α,2 ∈ Γ(OṼα). Now let ϕ ∈ HomUα(f∗αΩW , I) be defined by the
difference6 d(f̃α − f̃ ′α). It can be easily checked, based on (1.13) and
(1.14), that (ϕ, η1, η2) is in HomUα(f∗ΩW [n], I)†.
It remains to check that this correspondence is one-one and onto,

which is straightforward. This completes the proof of the lemma. q.e.d.

Remark 1.13. In the remainder part of this paper, we will call
(ϕ, η1, η2) the log difference of f̃α and f̃ ′α, denoted by d†(f̃α − f̃ ′α). Fur-
thermore, if f̃1, f̃2 and f̃3 are three predeformable extensions of fα to
Ũα, then d†(f̃3 − f̃1) = d†(f̃3 − f̃2) + d†(f̃2 − f̃1).

6Let ι : A′ → A be a small ring extension with I = ker{ι}. We call A′ → A
a small extension if I2 = 0. Let B be any ring. Let f1, f2 : B → A be two ring
homomorphisms so that ι ◦ f1 = ι ◦ f2. We define the difference of f1 and f2 to be
the map d(f1 − f2) : ΩB → I defined by b ⊗ 1 − 1 ⊗ b �→ f1(b) − f2(b) ∈ I. It is
an A-homomorphism ΩB ⊗B A → I. Note that once f1 is fixed, then f2 is uniquely
determined by d(f1 − f2). Conversely, any ϕ ∈ HomA(ΩB ⊗B A, I) defines a unique
homomorphism f2 :B → A so that d(f1 − f2) = ϕ.
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We next study the obstruction to deforming a global predeformable
morphism f :X → W [n]. Before we proceed, we introduce more conven-
tion which will be followed throughout this paper. We let ια :Uα → X
and α : Vα → S be the tautological projections. As a convention, for
each α ∈ Λ we let Aα = Γ(Vα) with A → Aα the tautological homomor-
phism, for α and β ∈ Λ we will denote by Uαβ the product Uα ×X Uβ
and by pα the projection Uαβ → Uα. The same convention applies to
multi-indices in the obvious way. We let πα :Uα → Vα be the projection.
For sheaf of OX -modules A (resp. A-module I; divisor D) we will de-
note by Aα (resp. Iα, resp. Dα) the pullback sheaf ι∗αA (resp. I ⊗A Aα;
resp. D ×X Uα). Also, for A-module I, we will use I (resp. Iα) to de-
note the sheaf of OX -modules OX ⊗A I (resp. OUα ×A I). We denote
by dα : F0

α → F2
α the pullback of d : F

0 → F 1 in (1.15). For sheaves
of OX -modules A and B we agree that HomUα(A,B) = HomUα(Aα,Bα)
and for A-modules I and J we agree HomAα(I, J) = HomAα(Iα, Jα).
We now study the deformation of f :X/S → W [n]/An+1. Since X/S

is a flat family of nodal curves, there is a complex of free A-modules

F • = [F 0 d−→F 1](1.15)

so that for any A-module I,

ExtiX (ΩX/S(D), I) = hi(F • ⊗A I).(1.16)

Now let S̃ � SpecA ∗ F 1∨ 7 with S ⊂ S̃ be the immersion induced by
the obvious projection A∗F 1∨ → A. Let 1 ∈ F 1 ⊗AF 1∨ be the identity
element and let [1] ∈ Ext1X (ΩX/S(D), F 1∨) be the associated element.
The element [1] defines a family X̃/S̃ extending the family X/S, using
(1.16). It has the following properties:

Firstly, let I be any A-module and let a ∈ F 1 ⊗A I be any element.
Let T � SpecA ∗ I and XT /T be the extension of X defined by the
cohomology class [a] ∈ Ext1X (ΩX/S(D), I) of a ∈ F 1 ⊗A I. Then X̃ ×

S̃

T ∼= XT under the morphism T → S̃ defined by A ∗ F 1∨ → A ∗ I via
(x, y) 
→ (x, a(y)).

Secondly, let T̃ � SpecA∗F 0∨ → S̃ = SpecA∗F 1∨ be the morphism
defined by A ∗ F 1∨ → A ∗ F 0∨ via (x, y) 
→ (x, d∨(y)). Then we have
isomorphism over T̃ X̃ ×

S̃
T̃ ∼= X ×S T̃ , where the projection T̃ → S is

defined by the obvious inclusion A ↪→ A ∗ F 0∨.
7In this section we will denote by A ∗ I the trivial ring extension of A by the

A-module I.
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As mentioned, 1 ∈ F 1 ⊗A F 1∨ defines an extension X̃/S̃, which we
fix from now on. We let Ũα (resp. Ṽα) be the étale neighborhood of
X̃ (resp. S̃) that is the minimal extension of Uα (resp. Vα)8 . Then
{Ũα/Ṽα} forms a covering of X̃/S̃. By Lemma 1.12, fα : Uα → Wα

can be extended to a predeformable morphism Ũα → W [n]. For each
α we pick one such extension ζα : Ũα → W [n] once and for all. Now
let α, β ∈ Λ be a pair so that Uαβ �= ∅. Let Ũαβ = Ũα ×X̃ Ũβ and let
p̃α : Ũαβ → Ũα be the projection, following our convention. Since both
ζα ◦ p̃α and ζβ ◦ p̃β are predeformable extensions of fαβ :Uαβ → W [n],
by Lemma 1.12 their difference defines an element

ζαβ � d†(ζβ ◦ p̃β − ζα ◦ p̃α) ∈ HomUαβ (f∗ΩW [n], F
1∨)†.

This defines a homomorphism

ζαβ(·) : F 1 −→ HomUαβ (f
∗ΩW [n], A)

†.(1.17)

Now to each α we construct a homomorphism

ζα(·) : F 0 −→ HomUα(f
∗ΩW [n], A)

†.(1.18)

Let 1 ∈ F 0 ⊗A F 0∨ be the identity element. Then

d(1) ∈ F 1 ⊗A F 0∨ ≡ HomA(F 1∨, F 0∨)

(d is the differential in the complex F •) defines a morphism

τ : T � SpecA ∗ F 0∨ → SpecA ∗ F 1∨ = S̃.

Let XT /T be the pullback family of X̃/S̃ via τ with q : XT → X̃ the
induced the projection. By the second property after (1.16), XT is iso-
morphic to X ×S T for the T → S induced by the obvious inclusion
A → A ∗ F 0∨. We let q0 :XT → X be the induced projection. Clearly,
Uα � Ũα ×

S̃
T is canonically isomorphic to Uα ×S T under the isomor-

phism XT ∼= X ×S T . Then restricting to Uα, both ζα ◦ q and f ◦ q0 are
predeformable extensions of fα. By Lemma 1.12, the difference

d†(ζα ◦ q − f ◦ q0) ∈ HomUα(f∗ΩW [n], F
0∨)†.

It defines the desired homomorphism ζα(·) in (1.18).
8We say Ũα is a minimal extension of the étale neighborhood Uα if Ũα → X̃ is an

étale neighborhood and Ũα ×X̃ X ∼= Uα.
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Lemma 1.14. Both ζα(·) and ζαβ(·) are homomorphisms of A-
modules. Further, for any a ∈ F 0 we have

−p∗αζα(a) + p∗βζβ(a) = ζαβ(d(a)) ∈ HomUαβ (f∗ΩW [n], A)
†,

where pα :Uαβ → Uα is the projection and p∗αζα(·) is the pullback homo-
morphism.

Proof. The proof is straightforward and will be omitted. q.e.d.

In the next part, we will construct the complex that will be a part
of the perfect obstruction theory of S ⊂ M(W [n],Γ)st we are about to
construct. Let I be any A-module. We let D(I)• be the Čech complex

D(I)• = C•
(
Λ,Hom(f∗ΩW [n], I)

†)
associating to the covering Λ, where

Γ(Uα1...αk ,Hom(f∗ΩW [n], I)
†) = HomUα1...αk

(f∗ΩW [n], I)
†

with ∂ :D(I)• → D(I)•+1 the coboundary differential in the Čech com-
plex. We let

δk : F k ⊗A I −→ Ck
(
Λ,Hom(f∗ΩW [n], I)

†), k = 0, 1

be defined by δ0(a)α = ζα(a) and δ1(b)αβ = ζαβ(b). By Lemma 1.14,
δk are homomorphisms of A-modules. We now show that this defines a
homomorphism of complexes

δ : F • ⊗A I −→ D(I)•.

To prove this, we need to check that δ1 ◦ d = ∂ ◦ δ0 on F 0 ⊗A I and
∂ ◦ δ1 = 0 on F 1 ⊗A I. We will check ∂ ◦ δ = 0 on F 1 ⊗A I and leave the
other to the readers. Let b ∈ F 1 ⊗A I be any element. By definition,
(∂ ◦ δ1)(b)αβγ = δ1(b)αβ − δ1(b)αγ + δ1(b)βγ = ζαβ(b)− ζαγ(b) + ζβγ(b)

as elements in HomUαβγ (f
∗ΩW [n], I)†, where the summation is taken

after pulling back each term in the summation to this module in the
obvious way. But this vanishes because of the relation ζβγ−ζαγ+ζαβ =
0, following Remark 1.13. This shows that ∂ ◦ δ1 = 0 on F 1 ⊗A I.
In the end, we define the complex E(I)• by

E(I)k = ⊕
i+j=k

(F i ⊗A I ⊕ D(I)j−1)(1.19)
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with the differential dE :E(I)k → E(I)k+1 defined via

F 0 ⊗A I (d⊕,−δ0)−−−−−→ F 1 ⊗A I ⊕ D(I)0 δ1+∂−−−→ D(I)1 ∂−−−→ . . .

When I = A, we will abbreviate D(A)• and E(A)• to D• and E•

respectively.

Lemma 1.15. We assume Λ is a sufficiently fine cover of f .
Then for any A-module I, E(I)• is canonically isomorphic to E• ⊗A I
as complexes. Further, the complex E• is a complex of flat A-modules.

Proof. The proof is straightforward and will be omitted. q.e.d.

We remark that the complex E• just constructed depends on the
choice of the atlas Λ. To emphasize this dependence we shall denote it
by E•Λ. Let Λ

′ be any atlas of f that is a refinement of Λ with associated
complex E•Λ′ . Following [30, III.2], we can define a homomorphism of
complexes E•Λ → E•Λ′ which induces a map of cohomologies

ρ(Λ,Λ′) : hi(E•Λ ⊗A I) −→ hi(E•Λ′ ⊗A I)
and then form the direct limit lim→ hi(EΛ ⊗A I) taken over all charts
of f . Note that this limit is a functor from ModA to ModA, denoted by
hi(E•). We now assume Λ is fine enough so that hi(E•)(I) = hi(E•Λ⊗AI)
for all A-module I. We fix such a Λ once and for all, and abbreviate
the resulting complex E•Λ to E

•.
We now prove the main result of this section.

Proposition 1.16. Let Def1A be the functor of the first order
deformations of morphisms to S = SpecA, which is naturally a functor
from A-modules to A-modules. Then Def1A is naturally isomorphic to
the functor h1(E•).

Proof. Let ξ = (B, I) be any object in ModA. We first show that
there is a canonical isomorphism Def1A(ξ) ∼= h1(E• ⊗A I).
Let T = SpecB and T̃ = SpecB ∗ I, the trivial extension by I.

Since B is an A-algebra, there is a tautological morphism T → S. Let
x ∈ Def1S(ξ) (= Def1A(ξ)) be any element, associated to an extension
T̃ → S of T → S, and let fT : XT → W [n] (resp. f

T̃
: X

T̃
→ W [n])

be the pull back family of f via T → S (resp T̃ → S). We let DT ⊂
XT and D

T̃
⊂ X

T̃
be the associated divisors of marked points and let

I = OXT ⊗B I. First of all, since X
T̃
is a flat extension of XT to T̃ , it

associates to a unique element

[a] ∈ Ext1XT (ΩXT /T (DT ), I) ∼= h1(F • ⊗A I),(1.20)
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where a ∈ F 1 ⊗A I. Now let S̃ be the trivial extension of S by F 1∨ and
let X̃/S̃ be the family defined after (1.16). Then a defines a morphism
ϕa : T̃ → S̃ via the homomorphism A ⊕ F 1∨ → B ⊕ I defined by
(x, y) 
→ (x, a(y)), where x is the image of x in B. By the first property
after (1.16), a defines an isomorphism γa : X

T̃
∼= X̃ ×

S̃
T̃ , where the

projection T̃ → S̃ is via ϕa. We let Ũα = Ũα ×
S̃
T̃ and Ṽα = Ṽα ×

S̃
T̃ .

Then each Ũα/Ṽα extends to a chart (Ũα/Ṽα, fT̃ ,α) of fT̃ , where fT̃ ,α �
f
T̃

|
Ũ
. We let ρ̃α : Ũα → Ũα be the projection. Then over each Ũα we

have two predeformable extensions of fT : One is fT̃ ,α and the other is
the composite ζα ◦ ρ̃α. Let

bα = d†(f
T̃ ,α

− ζα ◦ ρ̃α) ∈ HomUα(f∗TΩW [n], I)
†

and let b = {bα} ∈ D0 ⊗A I. We claim that (a, b) ∈ E1 ⊗A I is in the
kernel of dE. For this, we only need to check that

dE(a, b)αβ = δ(a)αβ + ∂(b)αβ
= ζαβ(a) + (bβ − bα) = ζαβ(a)− d†(ζβ ◦ ρ̃β − ζα ◦ ρ̃α)

vanishes for all pairs (α, β). But this follows immediately from the
definition of ζαβ(·). This shows that (a, b) defines a cohomology class
[(a, b)] ∈ h1(E• ⊗A I).
Next, we show that [(a, b)] is independent of the choices of a and the

isomorphisms γa :XT̃ ∼= X̃ ×
S̃
T̃ . Let a′ ∈ F 1 ×A I be another element

so that [a′] = [a] in (1.20). Then a−a′ = dI(c) for a c ∈ F 0 ⊗A I, where
dI :F 0 ⊗A I → F 1 ⊗A I is induced by d in (1.15). Now let

ϕa′ : T̃ → S̃, γa′ : XT̃ ∼= X̃ ×
S̃
T̃ ,

ρ̃ ′α : Ũα → Ũα, b′α = d†(f
T̃ ,α

− ζα ◦ ρ̃ ′α)

be objects defined similarly with a replaced by a′. Let b′ = {b′α}. We
claim that

dE(c) = (a, b)− (a′, b′) ∈ E1 ⊗A I.
Once this is established then [(a, b)] = [(a′, b′)] ∈ h1(E• ⊗A I), which
shows that [(a, b)] only depends on the class x ∈ Def1S(ξ). This way we
obtain a map

T(ξ) : Def1S(v) −→ h1(E• ⊗A I).
Now we prove the claim. Since

dE(c) = (∂(c),−δ(c)) = (dI(c),−δ(c))
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and dI(c) = a − a′, it suffices to show that δ(c)α = ζ(c)α is identical to

−(b − b′)α = −(bα − b′α) = −d†(f
T̃ ,α

− ζα ◦ ρ̃α) + d†(f
T̃ ,α

− ζα ◦ ρ̃ ′α)
= d†(ζα ◦ ρ̃α − ζα ◦ ρ̃ ′α).

The proof that ζα(c) = d†(ζα ◦ ρ̃α − ζα ◦ ρ̃ ′α) is routine and will be
omitted.
We now show that the map T(ξ) is one-one and onto. We give an

outline of the proof since it is standard. We first show that it is one-one.
Let x ∈ Def1S(ξ) be any element so that T(ξ)(x) = 0 ∈ h1(E•⊗A I). We
let (a, b) be the pair constructed associated to the family f

T̃
:X
T̃

→ W [n]
following the previous discussion. Since [(a, b)] = 0, there is a c ∈ F 0⊗A
I so that (a, b) = dE(c). This implies at first that a = dI(c). Hence
X
T̃

∼= XT ×T T̃ under the obvious projection T̃ → T via B → B ⊕ I.
Let ρ : X

T̃
→ XT be the projection. Because T(ξ)(x) is well-defined,

T(ξ)(x) is also represented by (0, b′), where b′ = {b′α} and
b′α = d†(f

T̃ ,α
− fT,α ◦ ρα) ∈ HomUα(f∗TΩW [n], I)

†.

Again, since T(ξ)(x) = 0, there must be a c ∈ F 0 ⊗A I so that dI(c) = 0
and δ(c) = b′. Hence c lifts to an element in Ext0XT (ΩXT /T (DT ), I),
which defines a new isomorphism γ :X

T̃
∼= XT ×T T̃ . Further, δ(c) = b′

implies that under this new isomorphism f
T̃
is the constant extension

of fT . Namely, fT̃ is the pull back of fT via the projection T̃ → T . This
proves that x = 0 in Def1S(ξ) and hence T(ξ) is one-one.
The onto part is similar. Since this argument is standard in defor-

mation theory, we will omit it here. In the end, we need to check that
T(ξ) is a homomorphism of modules and that T is an isomorphism of
functors. This is straightforward and will be omitted. q.e.d.

Corollary 1.17. Let ξ = (B, I, ϕ0) be any object in TriS. Suppose
DefS(ξ) �= ∅, then DefS(ξ) is isomorphic to the set h1(E• ⊗A I).

Proof. Since S is an étale chart of M(W [n],Γ)st, which is a Deligne-
Mumford stack, the standard fact in deformation theory shows that
once an extension ϕ : SpecB → S of ϕ0 is fixed, then the space of all
such extensions is canonically isomorphic to Def1S(ξ0) ∼= h1(E• ⊗A I),
where ξ0 = (B/I ∗ I, I, ϕ0). This proves the corollary. q.e.d.

Proposition 1.18. There is a natural obstruction theory to defor-
mation of the family of predeformable f :X → W [n] over S that takes
values in h2(E•).
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Proof. The construction of the obstruction class is standard, as
shown in [25] for smooth targets. Let ξ = (B, I, ϕ) be an object in TriS .
Let T = SpecB/I and let fT : XT → W [n] be the pullback of f via
T → S. By definition, extending T → S to T̃ → S is equivalent to
extending fT to a family of predeformable morphisms over T̃ . We now
construct the obstruction class to this extension problem.
Since deformation of pointed curves is unobstructed, we can extend

XT to a family over T̃ . By our choice of F •, such extension can be
realized by an extension T̃ → S̃ of T → S. We let X

T̃
be the pullback

family X̃ ×
S̃
T̃ . Let Ũα = Ũα×

S̃
T̃ , Ṽα = Ṽα×

S̃
T̃ , Uα = Ũα×X

T̃
XT and

let Vα = Ṽα×X
T̃

XT . Also we extend Uα/Vα to a chart (Uα/Vα, fT,α,Wα)
of fT . This way Ũα/Ṽα is a minimal extension of Uα/Vα to X

T̃
/T̃ . Next

we let ρ̃α : Ũα → Ũα be the projection. For any α we pick a family of
predeformable extension h̃α : Ũα → W [n] of fT,α. We let p̃α : Ũαβ → Ũα
be the projection. We then let

bαβ = −d†(h̃β ◦ p̃β − h̃α ◦ p̃α
) ∈ HomUαβ (f∗TΩW [n], I)

†.(1.21)

We let b = {bαβ}, which belongs to D1 ⊗A I ⊂ E2 ⊗A I. It follows from
the Remark 1.13 that b is a cocycle, and thus defines a cohomology class
[b] in h2(E• ⊗A I). The technical part of the proof is to check that the
cohomology class [b] is independent of the choices of T̃ → S̃ and h̃α.
The argument for this is straightforward though tedious, and will be
omitted.
We now show that it is an obstruction class to extending fT to

families of predeformable morphisms over T̃ . First, if such extensions
do exist, then we can choose X

T̃
and h̃α be data coming from one of

such extensions. Then the corresponding b′ = 0 as cocycle and thus
[b] = [b′] = 0. This shows that [b] = 0 whenever extensions of fT
exist. Now assume [b] = 0. We first look at the case where the cycle
b ∈ D1⊗A I is a coboundary in D•⊗A I. Namely, there is a c ∈ D0⊗A I
so that b = ∂(c). Let c = {cα} with cα ∈ HomUα(f∗TΩW [n]† , I)

†. Then

by Lemma 1.12, we can find predeformable extension f
T̃ ,α
: Ũα → W [n]

of fT,α so that d†(fT̃ ,α− h̃α) = cα. Then over Ũαβ , the difference of the
pullbacks f

T̃ ,β
◦ p̃β and fT̃ ,α ◦ p̃α is

d†(f
T̃ ,β

◦ p̃β − f
T̃ ,α

◦ p̃α)
= d†(f

T̃ ,β
◦ p̃β − h̃β ◦ p̃β)− d†(f

T̃ ,α
◦ p̃α − h̃α ◦ p̃α)

+ d†(h̃β ◦ p̃β − h̃α ◦ p̃α)
= (cβ − cα)− bαβ = 0.
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Hence {f
T̃ ,α

} patch together to form a desired extension X
T̃

→ W [n] of
fT .
In general, assume [b] = 0, then there is an a ∈ F 0 ⊗A I and c ∈

D0 ⊗A I so that
b = dE(a, c) = δ(a) + ∂(c).

Now let r̃ ′ : T̃ → S̃ be a new extension of T → S so that d(r̃ ′ − r̃) =
a, where r̃ : T̃ → S̃ is the morphism used to construct the cycle b.
One checks that if one uses the new extension X̃ ×

S̃
T̃ , where T̃ →

S̃ is via r̃ ′, to construct a similar cycle b′ ∈ D1 ⊗A I, then b′ is a
coboundary in D•⊗A I. This reduces the situation to the previous case
studied, and hence confirms that a predeformable extension of fT over
T̃ can be found. This shows that [b] is an obstruction class to extending
fT to families of predeformable morphisms over T̃ , or equivalently the
obstruction class to extending T → S to T̃ → S.
We define

ob(B, I, ϕ) = [b] ∈ h2(E• ⊗A I).
Again it is direct to check that this assignment defines a functor from
TriS to Mod∗S . This completes the proof of Proposition 1.18. q.e.d.

We now summarize the results of this section in the following the-
orem. We need a vanishing lemma whose proof will be provided in
Proposition 5.1.

Lemma 1.19. For sufficiently fine Λ, we have hi(D• ⊗A I) = 0
for any A-module I and i ≥ 2.

Theorem 1.20. Let S be an affine chart of the moduli stack
M(W [n],Γ)st. Then the obstruction theory just defined is a perfect ob-
struction theory of S.

Proof. Let f :X → W [n] be the universal family over S. If suffices to
show that there is a complex of finitely generated free A-modules E• =
[E1 → E2] so that it is quasi-isomorphic to E•, where E• is the complex
associated to a sufficiently find atlas Λ of f . Since hi(D• ⊗A I) = 0 for
i ≥ 2 and any I, hi(E• ⊗A I) = 0 for i ≥ 3 and any I. Hence there is a
bounded subcomplex Ẽ• of flat A-modules so that it is quasi-isomorphic
to E•. Then we can apply the standard technique [12, III.12] to find
a bounded subcomplex E• of finitely generated free A-modules that is
quasi-isomorphic to E•. Finally, since hi(E ⊗A I) �= 0 only for i = 1
and 2, we can choose E• to be of the form [E1 → E2]. This proves the
theorem. q.e.d.
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Remark 1.21. In the Appendix, we will express the cohomology
h•(E•) in terms of some known cohomologies.

1.3 Obstruction to deforming relative stable morphisms

We will follow the notation developed in [23, Section 4] concerning rel-
ative stable morphisms. Let (Z,D) be a polarized relative pair and
let Z[n]rel be the expanded relative pair constructed there. Recall that
Z[n]rel consists of a proper variety Z[n] over An and a smooth divi-
sor D[n] ⊂ Z[n] that is isomorphic to D × An under the projection
Z[n]→ Z ×An. The pair (Z[n], D[n]) over An also admits an equivari-
ant G[n] action whose action on An is the standard one9 . The fibers
of Z[n]/An has at most normal crossing singularities and the singular
locus of all the fibers of Z[n]/An is a disjoint union of smooth varieties
B1, . . . ,Bn, indexed so that Bl surjects to the l-th coordinate hyper-
plane Hl ⊂ An.
In [23] we used admissible graph to describe the topological type of

relative stable morphisms to (Z[n], D[n]). Recall that a weighted graph
Γ consists of a collection of vertices VΓ, an ordered collection of weighted
roots RΓ and an ordered collection of legs LΓ plus two weight functions
g, b :VΓ → Z≥0 and a multiplicity assignment µ :RΓ → Z+. We require
Γ to be relatively connected in the sense that either Γ is connected or
each of its vertex has at least one root attached to it.
A relative morphism to Z[n]rel of type Γ consists of a pointed com-

plete nodal curve X and a morphism f :X → Z[n] that has the following
property: First the marked points of X are labeled by the ordered legs
and roots of Γ, say are p1, . . . , pk ∈ X and q1, . . . , qr ∈ X. We let
µ1, . . . , µr be the the weights of the respective roots of Γ. Secondly, the
connected components of X are labeled by a ∈ VΓ and the arithmetic
genus of the component Xa is g(a). Further, in case a root or a leg is
attached to a vertex a then its associated marked point must lie in the
connected component Xa. Thirdly, restricting to each connected com-
ponent Xa the morphism f |Xa with all the marked points in Xa is an
ordinary stable morphism to Z[n] of degree b(a) (using the polarization
on Z chosen implicitly). Lastly, as divisor f−1(D[n]) = µ1q1+· · ·+µrqr.
We recall the notion of relative stable morphisms to Zrel defined

in [23]. Let f : X → Z[n] be a relative morphism of type Γ, as de-

9In short, Z[1] is the blowing up of Z × A1 along D × 0 and D[1] is the proper
transform of D × A1. Z[2] is the blowing up of Z[1]× A1 along D[1]× A1, etc. The
G[n] action is the unique lifting of its standard action on Z × An.
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scribed. Recall fibers of Z[n]/An have normal crossing singularities
along B1, . . . ,Bn. We say f is predeformable if it is predeformable
along all Bi, as defined before. We say f is stable as a relative mor-
phism to Zrel if f is predeformable and Aut(f) is finite. Here Aut(f) is
the group of all pairs (a, b) where a :X → X are automorphisms and
b ∈ G[n] so that f ◦ a = f b. (Here we view b as an automorphism
b :Z[n]→ Z[n] using the G[n] action on Z[n] and f b is the composite of
f with b.) As was proved in [23], the moduli of all relative morphisms
to Z[n]rel of type Γ that are stable as morphisms to Zrel form a Deligne-
Mumford stack. We will denote this stack by M(Z[n]rel,Γ)st. The goal
of this subsection is to describe the obstruction theory of this moduli
stack.
Similar to the case f :X → W [n], for any family of relative stable

morphisms f : X → Z[n] over S there is a canonical log structure on
X/S and on Z[n]/An that makes f a morphism between log schemes.
The log structure onAn (resp. Z[n]) is given by the divisor ∪nl=1Hl ⊂ An

(resp. Z[n] ×A1 0 ∪ D[n] ⊂ Z[n]). As to the log structure on X/S, we
first note that if we letW/A1 be Z[1]/A1, then Z[n]/An =W [n−1]/An
and f is a family of predeformable morphisms to W [n − 1]. We let
(X ,M′) and (S,N ) be the associated log structures of f :X → W [n−1].
We let M′′ → OX be the log structure of f−1(D[n]) ⊂ X . The the
desired log structure on X is the associated log structure of the prelog
structureM′⊕M′′ → OX . It is obvious that this gives X a log structure
M, making it a log scheme over (S,N ) and making f a log morphism
between X †/S† → Z[n]†/An†.
Let S = SpecA be an affine chart of M(Z[n]rel,Γ)st with f :X →

Z[n] the universal family and qi, pj : S → X its marked sections. We
cover f by charts of the first or the second kind. Let these charts
be (Uα/Vα, fα,Zα) indexed by Λ as defined before (1.5) with W [n]
(resp. Dl; resp. n + 1) replaced by Z[n] (resp. Bl; resp. n). We let
D ⊂ X be the divisor of the locus of all marked sections of X/S. We
now fix a complex of finite rank free A-modules F • = [F 0 d−→F 1] so
that

h•(F • ⊗A I) = Ext•X (ΩX/S(D), I), I = I ⊗OS OX
for all A-module I. We form the group HomUα(f∗ΩZ[n], I)† as fol-
lows: In case Uα/Vα is a chart away from f−1(D[n]), this group is
HomUα(f∗ΩW [n−1], I)† with W [n − 1]/An = Z[n]/An understood. Now
let Uα/Vα be a chart of some points in f−1(D[n]) that is away from
f−1(B). Then by shrinking Uα/Vα and Zα if necessary, we can as-
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sume that there is a section zα ∈ Γ(OZα) so that zα = 0 is the divisor
Zα ∩ D[n]. We define HomUα(f∗ΩZ[n], I)† be the subgroup of

(ϕ, η) ∈ HomUα(f∗ΩZ[n], Iα)⊕ Iα
so that

ϕ(f∗dzα) = f∗α(zα) · η and ϕ(dtl) ∈ Iα, ∀ l.
Using the A-modules HomUα(f∗ΩZ[n], I)†, we can form the complex

(D(I)•, ∂), just as we did forW [n] before (1.19). As before, the element
1 ∈ F 1 ⊗A F 1∨ defines a flat extension of X/S to X̃/S̃, where S̃ �
SpecA ∗ F 1∨, with extended sections q̃i, p̃j : S̃ → X̃ . We let Ũα/Ṽα be
the minimal extension of Uα/Vα as an étale neighborhood of X̃/S̃. We
then pick ζα : Ũα → Z[n] that is an extension of fα :Uα → Z[n] so that
ζα is predeformable and

ζ−1α (D[n]) =
r∑
j=1

µj q̃j(Ṽα).(1.22)

To construct the corresponding complex E(I)• we need two homomor-
phisms

ζα(·) : F 0 −→ HomUα(f
∗ΩZ[n], A)†(1.23)

and

ζαβ(·) : F 1 −→ HomUαβ (f
∗ΩZ[n], A)†.(1.24)

First, as before we argue that the difference of ζα and ζβ over Ũαβ canon-
ically defines an element ζαβ ∈ HomUαβ (f∗ΩZ[n], F 1∨)†, which naturally
defines a homomorphism as required in (1.24). Here the log differ-
ential, namely f∗(dzα)/f∗(zα) 
→ η, appear near D[n] because of the
constraint (1.22). The construction of (1.23) is similar. Namely, locally
over SpecA ∗ F 0∨ there are two extensions of f : one given by the pull-
back of ζα and the other given by the pullback of f . Their difference
then gives rise to the homomorphism (1.23).
Once all such data are constructed, we then go ahead to form the

homomorphism of complexes F • ⊗A I → D(I)•, form a new complex
E(I)• and check that there is a complex of finite rank free A-modules
E• = [E1 → E2] so that it is quasi-isomorphic to E•, parallel to the
argument in the previous subsection.
We now state the main result of this section.
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Lemma 1.22. Let the notation be as before and let Λ be a suf-
ficiently fine covering of f by charts of the first or the second kinds.
Then the complex E• is a complex of flat A-modules. Further, for any
A-module I we have E(I)• = E• ⊗A I and hi(E• ⊗ I) = 0 for i �= 1, 2.
In particular, there is a complex E• = [E1 → E2] of finitely generated
free A-modules so that it is quasi-isomorphic to E•.

Theorem 1.23. Let the notation be as in the previous lemma and
let S = SpecA be the affine chart of M(Z[n]rel,Γ)st as before. Then
there is a perfect obstruction theory of S taking value in the complex
E•. In particular, the functor of the first order deformations Def1S is
isomorphic to h1(E•) and there is an obstruction assignment ob taking
values in h2(E•) that satisfies the required base change property.

Proof. The proof of the lemma and the theorem are parallel to that
of Lemmas 1.15, 1.19 and the Theorem 1.20. The only new ingredient is
about preserving the divisor f−1(D[n]) =

∑
µjqj(S). Since qj(S) ⊂ X

is a divisor smooth over S and D[n] ⊂ Z[n] is a smooth divisor, that
the deformation of morphisms preserving this relation is given by the
sheaf of log differentials is well-known, for example see [20]. Since the
proof is routine and parallel to what we did before, we shall omit it.
This completes the proof of the theorem. q.e.d.

2. Gromov-Witten invariants

In this section, we will define the virtual moduli cycle of M(W,Γ),
M(Wt,Γ) and M(Zrel,Γ), thus defining the Gromov-Witten invariants
of the family W , of the singular variety W0 and the relative Gromov-
Witten invariants of the pair (Z,D). In the next section, we will prove
the decomposition (degeneration) formula relating the Gromov-Witten
invariants of Wt to the relative Gromov-Witten invariants of the pairs
(Y1, D1) and (Y2, D2).

2.1 Perfect obstruction theories of M(W, Γ) and M(Zrel, Γ).

Recall that the construction of the virtual cycles of moduli stacks is
based on the choice of their perfect obstruction theories. In this section,
we will show that the perfect obstruction theories constructed in the pre-
vious section naturally induce perfect obstruction theories of M(W,Γ)
and M(Zrel,Γ).
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LetM be a proper Deligne-Mumford stack with an atlas Λ consisting
of finitely many affine étale morphisms ια : Sα = SpecAα → M. We
first recall the definition of a perfect obstruction theory of M.

Definition 2.1. A perfect obstruction theory ofM (over the atlas
Λ) consists of a choice of perfect obstruction theory (E•α, obα) of Sα for
each α ∈ Λ so that they satisfy the following compatibility condition:
First, let Obα be the obstruction sheaf (i.e., = Coker{E1

α → E2
α}), then

the collection {Obα}α∈Λ descends to a (global) sheaf of OM-modules
ObM. Secondly, the obstruction assignments obα and obβ are identical
when pulled back to Sαβ , using the given isomorphisms.

Note that {Obα} descends means that over Sαβ the pullback of Obα
and of Obβ are isomorphic and that such isomorphisms satisfy the co-
cycle condition on Sαβγ .
Our immediate goal is to show that the obstruction theories of

M(W [n],Γ)st naturally induces a perfect obstruction theory ofM(W,Γ).

Theorem 2.2. There is a natural perfect obstruction theory of
M(W,Γ) induced by the perfect obstruction theories of M(W [n],Γ)st

constructed in the previous section.

Proof. Let S be an affine chart of M(W,Γ). Without lose of gen-
erality, we can assume S is one of the chart constructed in the proof of
Theorem 3.10 in [23]. Namely, there is a chart S ⊂ M(W [n],Γ)st for
some n so that S is a closed subscheme of S and S → M(W,Γ) is in-
duced by S → S andM(W [n],Γ)st → M(W,Γ). We let S = SpecA and
S = SpecA. We then let E• = [E1 → E

2] be the complex of A-modules
provided by Theorem 1.20 for the chart S.
We begin with the functor of the first order deformations in S. As

argued in the proof of [23, Theorem 3.10], there is a neighborhood U
of S × {e} ⊂ S × G[n] so that the morphism S × G[n] → M(W [n],Γ)st

induced by the G[n]-action lifts to an étale φ : U → S. Since U → S
is étale, each vector v ∈ TeG[n] defines a first order deformation of the
inclusion S → S, and hence an element v ∈ h1(E• ⊗A A). This induces
a homomorphism

TeG[n]⊗k A −→ h1(E• ⊗A A) −→ E
1 ⊗A A.(2.1)

Since elements in M(W [n],Γ)st associate to stable morphisms to W,
at each closed point p ∈ S the homomorphism TeG[n] → TpS/TpS
induced by the group action is injective. Hence the cokernel of the
composite in (2.1) is also free. Now let E1 be the cokernel of (2.1) and
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let E2 = E
2 ⊗AA. It is direct to check that the composite of (2.1) with

E
1 ⊗A A → E

2 ⊗A A is trivial. Hence E1 ⊗A A → E
2 ⊗A A lifts to

E1 → E2.
We next show that the natural obstruction theory of S takes values

in the cohomology theory of E•. First, since (2.1) has free cokernel, E•

is a two-term complex of finitely generated free A-modules. Secondly,
that the functor of the first order deformations in S is given by the
functor h1(E•) is obvious since the morphism

S × G[n] ⊃ U
φ−→S(2.2)

induced by the group action is étale near S×{e}. Finally, let (B, I, ϕ) ∈
Ob(TriS), then it is also an object in TriS and thus has an obstruction
class

ob(B, I, ϕ) ∈ h2(E• ⊗A I) = h2(E• ⊗A I)
to extending ϕ :SpecB/I → S to SpecB → S. Because G[n] is smooth
and φ : U → S (in (2.2)) is étale, ob((B, I, ϕ)) is also an obstruction
class to extending ϕ to SpecB → S.
Now let Sα be charts of M(W,Γ) with E•α their complexes that are

part of their obstruction theories. Then it is direct to check that the
collection {h2(E•α)} form a sheaf overM(W,Γ), and the obstruction as-
signments obα are compatible. This completes the proof of Theorem 2.2.

q.e.d.

We now state the theorem concerning the obstruction theory of
M(Zrel,Γ).

Theorem 2.3. The perfect obstruction theory of M(Z[n]rel,Γ)st

constructed in the previous section naturally induces a perfect obstruc-
tion theory of M(Zrel,Γ).

Proof. We will omit the proof here since it is exactly the same as
the proof of the previous theorem. q.e.d.

The next issue is about the obstruction theory of the substack
M(Wt,Γ) defined by the fiber product

M(Wt,Γ) =M(W,Γ)×C t,

where t ∈ C is a closed point. Clearly, when t �= 0 the stackM(Wt,Γ) is
naturally isomorphic to the module stack of stable morphisms to Wt of
topological type Γ, which itself admits a natural obstruction theory as
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worked out in [25]. The obstruction theory of M(W0,Γ) deserves more
attention since it was not known before.
We now study the obstruction theory of M(W0,Γ). Let W0[n] =

W [n] ×C 0. As in the case of M(W,Γ), we only need to work out the
obstruction theory of

M(W0[n],Γ)st � M(W [n],Γ)st ×C 0.
Let S = SpecA be an affine chart of M(W [n],Γ)st. Then S0 = S ×C 0
is an affine chart of M(W0[n],Γ)st. We let A0 be the quotient ring
of A so that S0 = SpecA0. As before we let f : X → W [n] be the
universal family over S and let f0 :X0 → W0[n] be the restriction of f to
S0 ⊂ S. We fix a sufficiently fine covering (Uα/Vα, fα,Wα) of f indexed
by Λ and let E• be the associated complex of A-modules constructed in
Section 1.1. We let V0 be the coverings {V0,α} of S0 with V0,α = Vα×C 0.
Similarly we let U0,α = Uα ×C 0 and let f0,α : U0,α → W0[n] be the
restriction of f to U0,α. For any A0-module I, we define

ΓV0,α1...αm
(I) � I ⊗A0 Γ(OV0,α1...αm

).(2.3)

Using these, we can form a Čech complex C•(V0, A0) with the standard
coboundary operation. Let E•0 = E• ⊗A A0. We next construct a
homomorphism

δi : Ei0 → Ci−1(V0, A0)⊗k T0C.

Here we understand C−1(V0, A0) = 0. Let ξ ∈ E1
0 be any element. We

write ξ = (a, b) with a ∈ F 1 ⊗A A0 and b ∈ C0(Λ,Hom(f∗ΩW [n], A0)†),
as in Section 1. Then by the construction in Section 1.1, to each α ∈ Λ
the element a defines an extension of U0,α/V0,α to Ũ0,α/Ṽ0,α by A0,α (=
ΓV0,α(A0)). The extension ζα chosen before (1.18) induces an extension
ζ̃0,α : Ũ0,α → W [n] of f0,α :U0,α → W0[n]. We let πn :W [n] → C be the
tautological projection. We now consider πn ◦ ζ̃0,α : Ũ0,α → C. Since
πn ◦ ζ̃0,α|U0,α factor through 0 ∈ C,

d(πn ◦ ζ̃0,α − 0) ∈ ΓU0,α(A0,α)⊗k T0C, A0,α = A0 ⊗A0 OU0,α .

Because ζ̃0,α is a predeformable extension, the above element lies in
A0,α ⊗k T0C. We define δ1(a)α to be this element. For δ1(bα), since
bα ∈ Γ(Uα,Hom(f∗ΩW [n], A0)†), bα induces a homomorphism (πn ◦
f)∗ T∨0 C → A0,α. Again this is an element in A0,α ⊗k T0C. We de-
fine δ1(bα) to be this element. Clearly, this construction carries over
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to the case of multi-indices. This defines a map (a homomorphism) of
complexes

δ : E•0 −→ C•−1(V0, A0)⊗k T0C.

It is direct to check that this is a homomorphism of complexes. We let
F• be the associated complex defined by

Fi = Ei0 ⊕ Ci−2(V0, A)0 ⊗k T0C

whose differential is the obvious induced one. Then we have a short
exact sequence of complexes

0 =⇒ C•−1(V0, A0)⊗k T0C =⇒ F• =⇒ E• ⊗A A0 =⇒ 0

which induces a long exact sequence of cohomologies for any A0-module
I:

0 −→ h1(F• ⊗A0 I) −→ h1(E•0 ⊗A0 I) −→ I ⊗k T0C −→

−→ h2(F• ⊗A0 I) −→ h2(E•0 ⊗A0 I) −→ 0.

Here we used the fact that since V0 is an étale covering of S0,
hj(C•(V0, I)) = I when j = 0 and vanishes when j ≥ 1.
Since terms inC•(V0, A0) are flat A0-modules, we can pick a complex

of finitely generated free A0-modules F • = [F 1 → F 2] so that F • is
quasi-isomorphic to F•.

Proposition 2.4. The chart S0 admits a natural perfect obstruction
theory taking values in the cohomology of the complex F •.

Proof. We need to check that the functor of the first order defor-
mations Def1S0

is isomorphic to the functor h1(F •) and that there is
an obstruction assignment taking values in h2(F •) that satisfies the re-
quired base change property.
The fact that the functor Def1S0

is isomorphic to h1(F •) ≡ h1(F•0)
follows directly from the definition and will be omitted. Now we con-
struct the obstruction assignment. Let (B, I, ϕ) be any object in TriS0 .
Let T = SpecB/I and fT : XT → W0[n] be the pullback family un-
der ϕ : T → S0. Let UT,α/VT,α be the pull back of U0,α/V0,α and let
fT,α :UT,α → W0[n] be the restriction of fT to UT,α. Recall that in con-
structing the obstruction class to extending T → S0 to T̃ = SpecB → S,
we first extend XT /T to X

T̃
/T̃ and extend fT,α : UT,α → W0[n] to

f
T̃ ,α

: U
T̃ ,α

→ W [n], where U
T̃ ,α

/V
T̃ ,α

is the minimal extension of



234 jun li

UT,α/VT,α in X
T̃
/T̃ . We then use the difference of f

T̃ ,α
and f

T̃ ,β
to

build a cocycle a ∈ E⊗A0 I. Let πn :W [n]→ C be the tautological pro-
jection as before. Since πn ◦ fT,α factor through 0 ∈ C, πn ◦ f

T̃ ,α
∈ Iα.

Further because f
T̃ ,α

is a predeformable extension, it lies in Iα. Hence
the collection {πn ◦ f

T̃ ,α
} defines a cochain c ∈ C0(V0, I). It is routine

to check that the pair (a, c) ∈ F2 ⊗A0 I is closed, and hence defines a
cohomology class [(a, c)] ∈ h2(F• ⊗A0 I). Further, it is routine to check
that this class is independent of the choice of the extensions f

T̃ ,α
, and

that it is an obstruction class to extending ϕ :T → S0 to T̃ → S0. We
define ob0 be the assignment that assigns (B, I, ϕ) ∈ Ob(TriS0) to this
class in h2(F• ⊗A0 I) = h2(F • ⊗A0 I). q.e.d.

Theorem 2.5. The obstruction theories of the charts S0 so defined
induce a perfect obstruction theory of M(W0[n],Γ)st, which induces a
perfect obstruction theory of M(W0,Γ).

Proof. The proof is similar to that of Theorem 2.2 and will be
omitted. q.e.d.

We comment that so far all the results concerning W0, including
its construction, are based on the existence of the smoothing W of W0.
It is not difficult to see that we can construct W0[n] from W0 directly,
assuming ND1/Y1

∼= N∨
D2/Y2

. Therefore, we can define W0 and the
moduli stack M(W0,Γ) directly without assuming the existence of W .
The construction of the perfect obstruction theory ofM(W0,Γ) without
using W is a little tricky, but should be doable. Since we will not use
this in this paper, we will content with assuming the existence of a
smoothing W of W0.

2.2 Gromov-Witten invariants

The goal of this subsection is to construct the virtual moduli cycles
of the moduli stacks M(W,Γ), M(Wt,Γ) and M(Zrel,Γ) and to define
their respective Gromov-Witten invariants.
Currently, there are two constructions of virtual moduli cycles in

algebraic geometry. One is the original construction by Tian and the
author. They assumed that the moduli space admits a perfect obstruc-
tion theory. They then constructed a global cone that function as a
virtual normal cone. Such cone was constructed using the (algebraic)
Kuranishi maps of the obstruction theory [25, 26]. In their construction
they made a technical assumption that there is a global vector bundle
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on the moduli space that makes the obstruction sheaf its quotient. With
this vector bundle, the cone becomes a subcone of this vector bundle,
and the virtual moduli cycle is the intersection of this cone with the
zero section of this vector bundle, using Gysin map. The alternative
construction of Behrend and Fantechi [2, 3] works along a parallel line.
They constructed a similar cone as an Artin stack, assuming the mod-
uli space admits a perfect obstruction theory. They then obtain a cone
cycle in a vector bundle by assuming the existence of a global vector
bundle, as in the original construction of Tian and the author. These
two constructions yield identical cycles [19]. Recently, by working out
the intersection theory on Artin stacks, Kresh [22] showed that one
can construct the virtual moduli cycle without relying on the existence
of a global vector bundle as mentioned, thus removing this technical
condition. This makes the construction of virtual moduli cycles more
versatile. After seeing Kresh’s work, we realized that by applying a
simple trick we can remove the technical condition of the existence of
such vector bundles in our construction of the virtual moduli cycles. In
the following, we will present this modified construction.
We begin with the general situations. Let M be a proper and sep-

arated DM-stack. We let Ob be a sheaf of OM-modules. We assume
that there is a finite collection of schemes Sα and smooth morphisms
ρα : Sα → M, indexed by a set Λ, so that the collection of images
ρα(Sα) ⊂ M form an open covering ofM. We next assume that to each
α ∈ Λ there is a locally free sheaf of OSα-modules Eα, a surjective ho-
momorphism of sheaves Eα → ρ∗αOb and a cone cycle Cα ∈ Z∗Vect(Eα)
that satisfy the following cycle consistency criteria. Here we denote
by Vect(Eα) the vector bundle over Sα so that its sheaf of sections is
Eα. In this paper, by abuse of notation we will view a vector bundle
as its total space. We first fix a few notations before we state the cri-
teria. Let p ∈ M be any closed point. We pick an étale morphism
ϕ : (X, p) → (M, p) and let X̂p be the formal completion of X along p.
We let Gp be the automorphism group of p ∈ M. Note that Gp acts
naturally on X̂p and up to Gp the scheme X̂p is canonical. We next let
Vp = ϕ∗Ob ⊗OX kp and let VX̂p be the vector bundle Vp × X̂p over X̂p.
Again Gp acts on Vp and VX̂p , and up to Gp they are canonical.

Cycle consistency criteria. We say the collection C = {(Sα, Eα,
Cα)}Λ satisfies the cycle consistency criteria at p ∈ M if there is a cycle
Cp ∈ Z∗VX̂p invariant under Gp of which the following hold. Let α ∈ Λ
be any index, let Sα,p = Sα ×M p and let Ŝα = Sα ×M X̂p. We let pri
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be the i-th projection of the product Ŝα = Sα ×M X̂p. Then there is a
surjective homomorphism of vector bundles

Φ1 : Vect(Eα)×Sα Ŝα −→ VX̂p ×X̂p Ŝα

extending the canonical (composite) homomorphism10

Vect(Eα)×Sα Sα,p −→ Vect(pr∗1ρ
∗
αOb|Sα,p) ≡ Vect(pr∗2ϕ∗Ob|Sα,p)

≡ Vp × Sα,p

so that Φ∗1Cξ = Φ
∗
2Cα. Here the first arrow above is induced by Eα →

p∗αOb, Φ2 is the tautological flat morphism Vect(Eα)×Sα Ŝα → Vect(Eα)
and Φ∗i are the flat pullback homomorphism of cycles.

We will call the collection Ĉ � {Cp ⊂ VX̂p}p∈M satisfying the above
criteria the infinitesimal models of the collection C. Accordingly we
will call C a local model of Ĉ. In the following, we say the collection
C is consistent if there is a Ĉ as above that satisfy the above criteria.
Conversely, given Ĉ, we say it can be algebraicized if there is a C so that
they satisfy the above criteria. Note that once the infinitesimal models
exist, then the property of the local model C is completely determined
by the infinitesimal models. This is the key to many of the results
concerning virtual moduli cycles.
Given a consistent collection C = {(Sα, Eα, Cα)}Λ over (M,Ob) we

now construct a canonical cycle [C] ∈ A∗M as follows. For each α we let
Ξα be the set of irreducible components of Cα. For a ∈ Ξα we denote
by Na the irreducible variety (component) in Cα associated to a and let
ma be the multiplicity of Na in Cα. Then we have

Cα =
∑
a∈Ξα

maNa ∈ Z∗Vect(Eα).(2.4)

For any a ∈ Ξα we define the base stack of a to be the minimal closed
integral substack Ya ⊂ M so that the natural Na → M factor through
Ya ⊂ M. We let ja :Y0

a → Ya be the (maximal) dense open substack
so that the pullback sheaf j∗aOb is locally free. Then F0

a � Vect(j∗aOb)
is a vector bundle stack over Y0

a. Further, the natural morphism

ηa : Vect(Eα)|ρ−1
α (Y0

a)
−→ F0

a ≡ Vect(j∗aOb)(2.5)

10For sheaves F of OZ-modules and closed subscheme X ⊂ Z we use F|X to denote
F ⊗OZ OX .
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induced by Eα → ρ∗αOb is flat. We let N0
a ⊂ F0

a be the image stack of
Na|ρ−1

α (Y0
a)
under ηa with the reduced stack structure. Clearly, by cycle

consistency criteria the flat pullback η∗aN0
a contains Na|ρ−1

α (Y0
a)
as one

of its irrducible components. In the following, we will call N0
a ⊂ F0

a the
intrinsic representative of a. Note that since we choose Y0

a to be the
maximal possible open substack of Ya so that j∗aOb is locally free, the
open Y0

a ⊂ Ya and the substack N0
a ⊂ F0

a only depend on a.
Now let b ∈ Ξβ be any element with Yb and N0

b ⊂ F0
b its base stack

and intrinsic representative. We say a ∼ b if Ya = Yb and N0
a = N0

b in
F0
a ≡ F0

b . This defines an equivalence relation ∼ on ∪α∈ΛΞα. We define
Ξ = (

⋃
α∈Λ Ξα)/ ∼. Again by the cycle consistency criteria whenever

a ∼ b then ma = mb. Hence each a ∈ Ξ has an associated multiplicity
ma, a base substack Ya and an intrinsic representative N0

a ⊂ F0
a over

an open substack Y0
a ⊂ Ya.

Assuming there is a global locally free sheaf E on M making Ob its
quotient sheaf, then over eachY0

a we have a flat projection Vect(E)|Y0
a

→
F0
a. We let Na ⊂ Vect(E) be the closure of the pullback of N0

a ⊂ F0
a

under this projection. The associated cycle [C] is then defined to be

[C] =
∑
a∈Ξ

ma0!Vect(E)[Na] ∈ A∗M,(2.6)

where 0!Vect(E) is the Gysin map of the 0-section of Vect(E). This is
essentially the original construction of Tian and the author.
We now back to the general situation (without assuming the exis-

tence of such E). We need to define a map ξ :Ξ → A∗M so that ξ(a) is
the cycle 0!Vect(E)[Na] should a global E exist. Let a ∈ Ξ be any element.
Since M can be covered by a quasi-projective scheme, there is a nor-
mal projective variety Ya and a generically finite surjective morphism
ϕa :Ya → Ya. By abuse of notation, we also view ϕa as the composite
of Ya → Ya with Ya → M. Since Ya is projective, there is a locally
free sheaf of OYa-modules Fa so that ϕ∗aOb is a quotient sheaf of Fa.
We denote by Fa the vector bundle Vect(Fa) over Ya. Let Y 0

a ⊂ Ya be
a dense open subset so that Y 0

a → Y0
a is étale. Then the morphism

ha : Fa|Y 0
a

→ F0
a induced by Fa → ϕ∗aOb is a flat morphism. We let

Na be the closure in Fa of the flat pull-back h∗aN0
a. Note that Na only

depend on Ya and Fa → ϕ∗aOb. The cycle Na ⊂ Fa will be called a
representative of a ∈ Ξ. With Na ⊂ Fa chosen, we define

ξ(a) = deg(ϕa)−1ϕa∗0!Fa [Na],(2.7)
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where 0Fa is the zero section of Fa, 0!Fa is the Gysin homomorphism
Z∗Fa → A∗Ya (of the zero section of 0Fa) and ϕa∗ is the push-forward
homomorphism of cycles. The degree deg(ϕa) is the degree of the mor-
phism ϕa :Ya → Ya defined in [38]. Finally, we define

[C] =
∑
a∈Ξ

ma ξ(a) ∈ A∗M.(2.8)

Note that this construction coincides with that in (2.6) in case a global
locally free sheaf E exists.
We will call this construction the basic construction and call [C] the

associated cycle of the collection C.
Lemma 2.6. Let the notation be as before. Then ξ(a) is indepen-

dent of the choice of Ya and Fa.
Proof. Let ϕa,1 : Ya,1 → Ya and ϕa,2 : Ya,2 → Ya be two normal

varieties and generically finite dominant morphisms and let Na,1 ⊂ Fa,1
and Na,2 ⊂ Fa,2 be the respective choices of the representatives of a over
Ya,1 and Ya,2. To prove the lemma it suffices to show that

deg(ϕa,1)−1ϕa,1∗0!Fa,1 [Na,1] = deg(ϕa,2)
−1ϕa,2∗0!Fa,2 [Na,2].

We let Ya be the normalization of an irreducible component of Ya,1 ×Ya

Ya,2 that is dominant and generically finite overYa. We let pi :Ya → Ya,i
be the projection induced by the i-th projection of Ya,1×YaYa,2. We pick
a locally free sheaf Fa on Ya and surjective homomorphism Fa → p∗iFa,i
so that the diagram

Fa −−−→ p∗1Fa,1� �
p∗2Fa,2 −−−→ p∗1ϕ∗a,1Ob ≡ p∗2ϕ∗a,2Ob

is commutative. Now let Fa = Vect(Fa), let U ⊂ Ya be a dense open
subset so that the projections U → Ya, U → Ya,1 and U → Ya,2 are flat.
Then the flat pull-back of N0

a ⊂ F0
a via the induced Fa|U → N0

a is iden-
tical to the flat pullback of Na,i ⊂ Fa,i under the flat morphism Fa|U →
Fa,i. Further, it is direct to check that deg(ϕa) = deg(ϕa,i) deg(pi).
Hence if we let Na,i ⊂ Fa,i ×Ya,i Ya � p∗iFa,i be the closure of the flat
pullback of Na,i|Ui (under Fa,i ×Ya,i U → Fa,i), then for i = 1 and 2,

ϕa,i∗0!Fa,i [Na,i] = deg(pi)
−1ϕa∗0!p∗i Fa,i [Na,i] = deg(pi)−1ϕa∗0!Fa [Na].
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This, combined with the identity about the degrees, proves Lemma 2.6.
q.e.d.

We now show how to apply this construction to construct the virtual
moduli cycle of a Deligne-Mumford stack M endowed with a perfect
obstruction theory. Let {Sα}α∈Λ be an atlas ofM and let {(E•α, obα)}Λ
be the data associated to the perfect obstruction theory of M as in
Definition 2.1. Here E•α = [E1

α → E2
α] is a complex of finite rank locally

free sheaves of OSα-modules. We let ObM be the sheaf of OM-modules
that is the descent of Coker{E1

α → E2
α}. Following [26, Section 3], to

each α we can construct a canonical cone cycle Cα ⊂ Vect(E2
α), using

the relative Kuranishi-maps constructed from the perfect obstruction
theory of Sα. The technical result proved in [26, Section 3] shows that
the collection {Sα, E2

α, Cα} satisfies the cycle consistency criterion. Thus
by applying the basic construction just explained we construct a cycle,
called the virtual moduli cycle of M, associated to the given perfect
obstruction theory. We denote this cycle by [M]virt. (For an alternative
construction of virtual cycle, see [3, 21].)
By applying this construction to the stacksM(W,Γ),M(W0,Γ) and

M(Zrel,Γ) with their respective perfect obstruction theories, we obtain
the virtual moduli cycles [M(W,Γ)]virt, [M(W0,Γ)]virt and
[M(Zrel,Γ)]virt. As in [26], for t ∈ C we define the GW-invariant of
Wt to be the homomorphism

ΨWt
Γ : H∗(Wt)×k × H∗(Mg,k) −→ H0(pt) ∼= Q

defined by

ΨWt
Γ (α, β) = q∗0

(
ev∗(α) ∪ π∗g,k(β) [M(Wt,Γ)]virt

)
,

where πg,k and ev are the forgetful and evaluation morphisms, g and
k are the genus and the number of marked points of the topological
type Γ, q :M(Wt,Γ) → {t} ⊂ C is the projection and q∗0 is the push-
forward A∗M(Wt,Γ)→ H0(pt) at degree 0. (Here we use H∗ to denote
the ordinary homology theory in case the ground field is C. Otherwise
one can use Chow rings to define the GW-invariants.)
The Gromov-Witten invariants of W is the homomorphism

ΨW/CΓ : H0
C(R

∗π∗QW )×k × H∗(Mg,k) −→ HBM
2 (C) ∼= Q

defined via a similar formula with q∗0 replaced by q∗1 :A∗M(W,Γ) →
HBM

2 (C). Here QW is the sheaf of locally constant functions on W
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taking values in Q, π :W → C is the tautological projection and HBM
2

is the Borel-Moore homology of the open complex curve C.
Now we define the relative Gromov-Witten invariants of Zrel =

(Z,D). Let Γ be an admissible weighted graph mentioned before. As ex-
plained, it determines the topological type of relative morphisms to Zrel.
We let Γo be the sub-data (in Γ) relating to the domain curves. (Namely,
the connected components, the genus and both kinds of marked points
of the domain curves.) Let MΓo be the moduli space of stable curves
with topological types Γo. Here a curve C of topological type Γo is sta-
ble if all connected components of C are stable pointed curves. Clearly,
MΓo is a Deligne-Mumford stack. As in the ordinary case, there is a
forgetful morphism πΓo :M(Zrel,Γ),Γ) −→ MΓo . We define the relative
GW-invariants to be the homomorphism

ΨZ
rel

Γ : H∗(Z)×k × H∗(MΓo) −→ H∗(Dr)

(recall k and r are the numbers of legs and roots of Γ) defined by

ΨZ
rel

Γ (α, β) = q∗
(
ev∗(α) ∪ π∗Γo(β) [M(Z

rel,Γ)]virt
) ∈ H∗(Dr).

Here

q :M(Zrel,Γ)→ Dr and ev :M(Zrel,Γ) −→ Zk(2.9)

are the morphisms defined by evaluating on the distinguished and the
ordinary marked sections respectively.

3. Degenerations of Gromov-Witten invariants

In this and the next section, we will prove the degeneration formula
of the Gromov-Witten invariants of the familyW/C stated in the intro-
duction of this paper. We will state the first version of the degeneration
formula in the first subsection. We will state the reduction lemmas in
Subsection 3.2. The proof of these lemmas will be given in the next
section.

3.1 The first version of the degeneration formula

The first step to prove the degeneration formula is to expressM(W0,Γ)
as a union of Cartier-divisors in M(W,Γ). Here we fix a Γ = (g, k, b)
once and for all. We first define the notion of Cartier-divisor of an
algebraic stack M.



a degeneration formula of gw-invariants 241

Definition 3.1. Let M be an algebraic stack. A C-divisor on M
is a pair (L, s) where L is a line bundle on M and s is a section of L.
An isomorphism between (L, s) and (L′, s′) consists of an isomorphism
L ∼= L′ so that s ≡ s′ under this isomorphism.

We comment that a C-divisor (L, s) over a scheme is a pseudo-divisor
(defined in [7]) via (L,Z, s) where Z = X − s−1(0). Note that when
(L, s) and (L′, s′) are two C-divisors, then (L, s)⊗ (L′, s′) � (L⊗L′, ss′)
is also a C-divisor. Also, we do not require that s be nontrivial.
We now let Ω be the set of all admissible triples defined in [23, Sec-

tion 4] and reviewed in the introduction. Recall that η = (Γ1,Γ2, I) ∈ Ω
is an admissible triple if Γ1 and Γ2 are two weighted graphs of identical
numbers of roots and I is an order preserving inclusion I : [k1] → [k]
where ki is the number of legs of Γi and k = k1 + k2. Let C1 and C2 be
two curves of topological types Γ1 and Γ2, respectively. We can identify
the i-th distinguished marked point q1,i ∈ C1 with the i-th distinguished
marked point q2,i ∈ C2 for all i to obtain a new curve C � C1 + C2. It
has k marked points, ordered according to I. As part of the definition
of Ω, we require that the multiplicities of the i-th roots of Γ1 and Γ2 are
identical, that C is connected of genus g and b =

∑
x∈V (Γ1)∪V (Γ2)

b(x)
(b(x) accounts for the degree of the stable morphism along the connected
component labeled by x). We will call C the gluing of C1 and C2 along
distinguised marked points. This gluing construction can be applied to
a pair of families of curves. Hence for each η = (Γ1,Γ2, I) ∈ Ω, we have
a closed local immersion of stacks

Φη :M(Yrel
1 ,Γ1)×Dr M(Yrel

2 ,Γ2) −→ M(W,Γ),(3.1)

defined in [23, (4.8)]. Here M(Yrel
i ,Γi) → Dr is the evaluation mor-

phism q in (2.9) and the morphism (3.1) is defined by sending any pair
((f1,X1), (f2,X2)) to the family (f1 + f2,X1 + X2). Following [23], we
define M(Yrel

1 + Yrel
2 , η) be the image stack of (3.1). As was shown in

[23, Section 4],

M(Yrel
1 ,Γ1)×Dr M(Yrel

1 ,Γ1) −→ M(Yrel
1 + Yrel

2 , η)(3.2)

is finite, étale of pure degree |Eq(η)|. Here by abuse of notion we also
use Φη to denote this induced morphism.
In this subsection, to each η ∈ Ω we will define a C-divisor (Lη, sη)

on M(W,Γ) so that the vanishing locus (as topological space) of sη is
M(Yrel

1 +Yrel
2 , η). We begin with the study of line bundles on An+1. We
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continue to use the convention introduced in [23, Section 1] concerning
subsets of An+1. For l ∈ [n + 1] we denote by Hl ⊂ An+1 the l-th
coordinate hyperplane of An+1. We define (sl, Ll) be a pair of a section
of a line bundle onAn+1 so that OAn+1(Ll) ∼= OAn+1(Hl) and the section
sl is the constant section 1 ∈ OAn+1 under this isomorphism. Recall that
An+1 is a G[n]-subscheme (G[n] � GL(1)×n) as defined in [23, Section
1]. Since Hl ⊂ An+1 is invariant under the G[n]-action, there is a
unique G[n]-linearization on Ll so that the section sl is G[n]-invariant.
We fix such a linearization. Now let J : [m + 1] → [n + 1] be an order
preserving embedding. Following the convention in [23, Section 1], J
defines a standard embedding11 γJ :Am+1 → An+1 and hence defines a
pullback C-divisor γ∗J(Ll, sl) on A

m+1. There are two possibilities: One
is when l �= Im(J). Then Im(γJ)∩Hl = ∅ and hence there is a canonical
isomorphism12 γ∗J(Ll, sl) ∼= (1Am+1 , 1). The other case is when J(l′) = l
for some l′ ∈ [m+ 1], in which case we have γ∗J(Ll, sl) ∼= (Ll′ , sl′).
Now let J : [n1+1]→ [n2+1] be an order preserving embedding. Let

S be any scheme, τ :S → An1+1 and ρ :S → G[n2] be two morphisms
with γJ :An1+1 → An2+1 the standard embedding. As in [23], we define
(γJ ◦ τ)ρ :S → An2+1 be the morphisms induced by γJ ◦ τ :S → An2+1

and the G[n2]-action on An2+1 via ρ.

Lemma 3.2. Let J , τ and ρ be as before. In case l2 = J(l1) then
we have a natural isomorphism

(
(γJ ◦ τ)ρ)∗(Ll2 , sl2) = τ∗(Ll1 , sl1). In

case l2 �∈ Im(J) the same identity holds with (Ll1 , sl1) replaced by (1, 1).

Proof. We have the canonical isomorphism (γJ ◦ τ)∗(Ll2 , sl2) ∼=
τ∗(Ll1 , sl1). The required isomorphism is then induced by the canonical
isomorphism (

(γJ ◦ τ)ρ)∗(Ll2 , sl2) ∼= (γJ ◦ τ)∗(Ll2 , sl2)

induced by the G[n2]-linearization on (Ll2 , sl2). q.e.d.

We now construct the required C-divisor (Lη, sη) on M(W,Γ). Let
S → M(W,Γ) be any chart with f : X → W its universal family.
Without loss of generality, we can assume that W =W [n]×C[n] S via a
τ :S → C[n]. We let

Sη = S ×M(W,Γ) M(Yrel
1 + Yrel

2 , η).(3.3)

11For instance in case J : [2] → [4] is defined by J(1) = 1 and J(2) = 3, then
γJ :A

2 → A4 is defined by γJ(t1, t2) = (t1, 1, t2, 1).
12We use bold 1X with subscription X to denote the trivial line bundle on X.
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In case Sη = ∅, we define (Lη, sη)|S be (1S , 1). When Sη �= ∅, we
consider the tautological projection ρη :Sη → M(Yrel

1 + Yrel
2 , η) and the

composite pi ◦ ρη :Sη → M(Yrel
i ,Γi). Here

pi :M(Yrel
1 + Yrel

2 , η) −→ M(Yrel
i ,Γi)

is the i-th projection, which exists if we replace S by an étale cover of
S. By shrinking S if necessary, we can assume that the pullback of the
universal family of M(Yrel

i ,Γi) to Sη (via pi ◦ ρη) is given by a family
fi :Xi → Yi, where Yi is an effective relative pair in Yrel

i (Sη) associated
to a morphism τi : Sη → Ani . Following the discussion leading to the
proof of Proposition [23, Prop. 4.12], the tautological family over Sη of
the morphism Φη|Sη :Sη → M(W,Γ) is represented by the family

f1 + f2 : X1 + X2 −→ Yo1 + Y2

with Yo1 + Y2 ∈ W(Sη) given by the morphism τη : Sη → C[n], where
n = n1+n2, defined in [23, (4.4)]13 . By definition f1 + f2 is isomorphic
to the restriction of f to the family over Sη, denoted by f |Sη . Namely
there are isomorphisms shown below that make the following diagram
commutative

X1 + X2
f1�f2−−−→ Yo1 + Y2

∼=
� ∼=

�
X ×S Sη

f |Sη−−−→ W ×S Sη.

(3.4)

Now let D1, . . . ,Dn+1 be the n+ 1 components of the singular locus of
the fibers of W [n] over C[n]. For any closed z ∈ Sη there is an integer
lz ∈ [n+ 1] so that the images of the distinguished divisors D1,z ⊂ Y1,z

and of D2,z ⊂ Y2,z under the obvious morphism

D1,z
∼= D2,z ⊂ Yo1 + Y2

∼=−→ W ×S Sη −→ W [n]

lie in Dlz . Clearly, lz is locally constant on Sη. Hence by shrinking S
if necessary we can assume that it is constant on Sη, say is lη ∈ Z. In
the following we will call f |Sη = f1 + f2 the η-decomposition of f and
call the divisor Dlη ⊂ W [n] the locus where the η-decomposition of f |Sη
takes place.

13Yo1 � Y2 is the result of gluing the distinguished divisors of Y1 and Y2 in the
obvious way.
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Definition 3.3. Let S → M(W,Γ) be a chart with f :X → W the
universal family, where W = W [n] ×C[n] S. We say S is η-admissible
if there is an integer l ∈ [n + 1] so that the tautological Sη → C[n],
where Sη is defined in (3.3), factor through C[n] ×An+1 Hl ⊂ C[n] and
that the divisor Dl ⊂ W [n] (or the locus X ×W [n]Dl ⊂ X ) is where the
η-decomposition of f |Sη takes place.
Clearly for each η ∈ Ω we can find an atlas Λ of M(W,Γ) so that

all its charts are η-admissible. Let Λ be such an atlas and let Sα be any
chart in this atlas. We let fα :Xα → W [nα] ×C[nα] Sα be the universal
family with τα : Sα → C[nα] the tautological morphism. We let lα
be the integer so that Dlα ⊂ W [nα] is where the η-decomposition of
fα|Sα,η takes place. We then define the C-divisor (Lη,α, sη,α) on Sα to
be the pull back of the C-divisor (Llα , slα) on A

nα+1 via S τα−→C[nα]→
Anα+1. Because the chart Sα is η-admissible, the vanishing locus of sη,α
is exactly Sα ∩ M(Yrel

1 + Yrel
2 , η).

Lemma 3.4. The collection (Lη,α, sη,α)α∈Λ forms a C-divisor on
M(W,Γ).

Proof. Let Sα and Sβ be two charts in Λ. We consider Sαβ =
Sα×M(W,Γ)Sβ with its projections ρα, ρβ. Let fα and fβ be the universal
families over Sα and Sβ and let ρ∗α(fα) and ρ∗β(fβ) be the pullback
families. We let the isomorphism of the families ρ∗α(fα) and ρ∗β(fβ) be
given by the (left hand side of the) diagram

Xα ×Sα Sαβ
fα|Sαβ−−−−→ Wα ×Sα Sαβ ⊃←−−− Dlα ×C[nα] Sαβ

ϕ1

�∼= ϕ2

�∼= ∼=
�

Xβ ×Sβ Sαβ
fβ |Sαβ−−−−→ Wβ ×Sβ Sαβ ⊃←−−− Dlβ ×C[nβ ] Sαβ .

(3.5)

We distinguish two cases: The first is when Sαβ is disjoint fromM(Yrel
1 +

Yrel
2 , η). Then the pullbacks of (Lη,α, sη,α) and (Lη,β , sη,β) to Sαβ are

canonically isomorphic to the trivial C-divisor (1Sαβ , 1), hence they are
naturally isomorphic to each other. The other case is when Sαβ ∩
M(Yrel

1 + Yrel
2 , η) �= ∅. Since Sα and Sβ are η-admissible, they have

the associated morphisms τα : Sα → C[nα] and τβ : Sβ → C[nβ] and
the associated integers lα and lβ respectively. Because of the isomor-
phisms in (3.5), we have Dlα ×C[nα] Sαβ ∼= Dlβ ×C[nβ ] Sαβ as shown in
the above diagram. Now let T be any open subset of Sαβ so that the
restriction of ϕ2 to Wα ×Sα T ∼= Wβ ×Sβ T is induced by a sequence
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of effective arrows14 . Then by Lemma 3.2, the restriction to T of the
pullback ρ∗α(Lη,α, sη,α) is canonically isomorphic to the restriction to T
of ρ∗β(Lη,β , sη,β). By [23, Lemma 1.8], we can cover Sαβ by such T ’s.
Further, applying Lemma 3.2 again we see immediately that the iso-
morphisms ρ∗α(Lη,α, sη,α)|T ∼= ρ∗β(Lη,β , sη,β)|T patch together to form an
isomorphism

ϕβα : ρ∗α(Lη,α, sη,α)
∼=−→ ρ∗β(Lη,β , sη,β).

Since the isomorphism ϕαβ canonically depends on the isomorphism
(3.5), over Sαβγ we have ϕαβ ◦ ϕβγ = ϕαγ . Thus the collection
(Lη,α, sη,α)α∈Λ coupled with the isomorphisms ϕαβ defines a C-divisor
on M(W,Γ). We denote the resulting C-divisor by (Lη, sη). q.e.d.

We now indicate the relation between the C-divisor (Lη, sη) and
the canonical log structure on M(W,Γ). Recall that the log structure
defined in Section 1.1 defines a canonical log structure onM(W [n],Γ)st,
which is G[n]-equivariant and thus descends to a canonical log structure
N on M(W,Γ). The line bundle Lη with the section sη defines also
a log structure Lη on M(W,Γ). It follows from the construction of
Nα (see (1.7)) and (Lη, sη) that the identity map is a log morphism
(M(W,Γ),Lη) → (M(W,Γ),N ). Using the chart V in (1.7), this is
given by the homomorphism of prelog structure N → Nl ⊂ NV defined
by 1 
→ mαeα for α ∈ Kl.
Associating to each closed point t ∈ C, considered as an effective

divisor in C, we have a C-divisor (Lt, rt) such that OC(Lt) = OC(t)
and that rt is the section induced by the constant section 1 ∈ Γ(C,OC)
together with the natural homomorphism OC(Lt) → OC(t). We let
(Lt, rt) be the C-divisor on M(W,Γ) that is the pullback of (Lt, rt) via
the tautological projection M(W,Γ) → C. When t = 0 ∈ C we denote
the corresponding C-divisor by (L0, r0). Recall that any triple η =
(Γ1,Γ2, I) ∈ Ω with r roots is defined to be similar to ησ = (Γσ1 ,Γσ2 , I)
for any permutation σ ∈ Sr. Note that when η1 ∼ η2 then (Lη1 , sη1) ≡
(Lη2 , sη2).

Proposition 3.5. The tensor product of the C-divisors {(Lη, sη) |
η ∈ Ω/∼} is isomorphic to (L0, r0).

Proof. Let Λ be an atlas of M(W,Γ) so that all its charts are η-
admissible for all η ∈ Ω/∼. Since Ω/∼ is a finite set, such atlas does
exist. Now let Sα be any chart in Λ. We let Ωα be those triples η ∈ Ω

14For the definition of effective arrows please see [23, Section 1].
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so that Im(Φη)∩ Sα �= ∅. Since (Lη,α, sη,α) ∼= (1Sα , 1) canonically when
η �∈ Ωα/∼,

⊗η∈Ω/∼(Lη, sη)|Sα ≡ ⊗η∈Ωα/∼(Lη,α, sη,α).
Now let fα : Xα → Wα be the universal family over Sα and let τα :
Sα → C[nα] be so that Wα = τ∗αW [nα]. To each η ∈ Ωα we let lη be
the integer defined in Definition 3.3. The assignment η 
→ lη defines a
function Ωα/∼→ [nα+1]. Because of [23, Lemma 4.13], this assignment
is one-to-one. Now let Kα ⊂ [nα+1] be the image set of this assignment
and let τα :Sα → Anα+1 be the composition of τα with the projection
C[nα] → Anα+1. Clearly, if l ∈ [nα + 1] − Kα, then τα(Sα) ∩ Hl = ∅
and hence τ∗α(Ll, sl) ≡ (1Sα , 1)15 . Otherwise, l = lη for a unique η ∈
Ωα/∼ and then τ∗α(Ll, sl) ≡ (Lη,α, sη,α). Therefore, we have canonical
isomorphisms

⊗η∈Ωα/∼(Lη,α, sη,α)|Sα ∼= ⊗l∈Kατ∗α(Ll, sl)⊗ ⊗l∈[nα]−Aτ∗α(Ll, sl)
∼= τ∗α

(⊗l∈Kα(Ll, sl))
∼= (L0, r0)|Sα .

Because the above isomorphisms are canonical, they are compatible over
Sαβ and hence define an isomorphism of C-divisors as required by the
proposition. q.e.d.

We now derive the first version of the degeneration formula. We
first recall the notion of localized top Chern class of a vector bundle
with a section. Let E be a rank m vector bundle over a scheme X
and s a section of E. The localized top Chern class of (E, s) is the
homomorphism

cm(E, s) :A∗X → A∗−ms−1(0)

defined in [7] as follows: Let Z be any variety in X. We take the normal
cone Ns−1(0)∩Z/Z to s−1(0) ∩ Z in Z and then define cm(E, s)([Z]) =
0!E(Ns−1(0)∩Z/Z), where 0!E is the Gysin map of the zero section 0E of
E|s−1(0). This defines a homomorphism of the group of cycles. This con-
struction can be extended to the case where X is an algebraic stack [38]
with A∗X understood to be the cycle group with rational coefficients.

15There is an exceptional case I should mention here. It is when there are s ∈ Sα
so that τα(s) ∈ Hl while f−1

α (Dl) ∩ Xs = ∅. Note that since Xs is connected, this
is possible only when l = 1 or nα + 1. In either case, we agree that Xs decomposes
into C1 � C2 with either C1 = ∅ or C2 = ∅, and the corresponding η = (Γ1, ∅, ∅) or
η = (∅,Γ2, ∅), which we agree is in Ω/∼. In this case we let lη be 1 or nα + 1. With
this agreement, this statement is true without exception.
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We consider the moduli stack M(W,Γ) and its Gromov-Witten in-
variants

ΨW/CΓ : H0
C(R

∗π∗QW )×k × H∗(Mg,k) −→ HBM
2 (C) ∼= Q.

Now let ξ ∈ C be any closed point and let H0
C(R

∗π∗QW ) → H∗(Wξ)
be induced by Wξ → W . As our convention, for α ∈ H0

C(R
∗π∗QW ) we

denote by α(ξ) its image in H∗(Wξ). We let HBM
2 (C)→ Q be the Gysin

homomorphism defined by intersecting with the divisor ξ ∈ C. Then
we have a commutative diagram

H0
C(R

∗π∗QW )×k × H∗(Mg,k)
Ψ
W/C
Γ−−−→ HBM

2 (C) ∼= Q� �
H∗(Wξ)×k × H∗(Mg,k)

Ψ
Wξ
Γ−−−→ Q.

(3.6)

This was proved in [25] for ξ �= 0 except that there we used the existence
of a global vector bundle in defining the GW-invariants. This will be
proved later in this paper again. We let Γ = (g, k, b) be the triple
as before and let α ∈ H0(R∗π∗QW )×k and let β ∈ H∗(Mg,k) be any
classes. As before, we let evξ : M(Wξ,Γ) → W×k

ξ be the evaluation
morphism by the ordinary marked points of the stable morphisms, and
let πg,k :M(W,Γ)→ Mg,k be the forgetful map.

Theorem 3.6. For any closed ξ ∈ C, we have

ΨWξ

Γ (α(ξ), β)

= q∗0

 ∑
η∈Ω/∼

(
ev∗0(α(0)) ∪ π∗g,k(β)

)(
c1(Lη, sη)[M(W,Γ)]virt

) .

Proof. First, by the commutativity of the diagram (3.6), we have
ΨWξ

Γ (α(ξ), β) = ΨW0
Γ (α(0), β). In the later part of this paper, we will

show that

ΨW0
Γ (α(0), β) = q∗0

((
ev∗0(α(0)) ∪ π∗g,k(β)

)(
c1(L0, r0)[M(W,Γ)]virt

))
.

Since (L0, r0) is the tensor product of all (Lη, sη), the Chern class op-
erations

c1(L0, r0) =
∑
η∈Ω/∼

c1(Lη, sη) : A∗M(W,Γ)→ A∗M(W0,Γ).

The theorem then follows immediately. q.e.d.
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3.2 Statement of the degeneration formula

In this subsection, we will first construct the virtual moduli cycles of
several moduli stacks related to the substack W0 ⊂ W. After that, we
will state the final version of the degeneration formula of the Gromov-
Witten invariants of this paper. We will leave the proof of the key
lemmas to the next section.
Let η ∈ Ω/∼ be any admissible triple. Associated to η we have the

substack M(Yrel
1 + Yrel

2 , η) ⊂ M(W,Γ) that is the image stack of Φη in
(3.1). Let (Lη, sη) be the C-divisor on M(W,Γ) defined in the previous
subsection. We define the substack

M(W0, η) = s−1η (0) ⊂ M(W,Γ).

Note that we have an increasing chain of closed substacks

M(Yrel
1 + Yrel

2 , η) ⊂ M(W0, η) ⊂ M(W0,Γ) ⊂ M(W,Γ),

where the first inclusion induces a homeomorphism on topological spaces.
In the previous section, we have constructed the perfect-obstruction the-
ories ofM(W,Γ) and ofM(W0,Γ), and thus have constructed their vir-
tual moduli cycles. In the first part of this subsection, we will show that
the natural obstruction theories of M(Yrel

1 + Yrel
2 , η) and of M(W0, η)

are also perfect. Thus they have natural virtual moduli cycles.
We first investigate the obstruction theory ofM(W0, η). The discus-

sion is parallel to the obstruction theory of M(W0,Γ). We now present
the details. Recall that for each n we have the moduli M(W [n],Γ)st of
stable morphisms to W [n] of topological type Γ that are also stable as
morphisms to the stack W. We let M(W [n],Γ)st → M(W,Γ) be the
tautological morphism and let

M(W0[n], η)st =M(W [n],Γ)st ×M(W,Γ) M(W0, η).

As in the case of M(W,Γ), we first work out the obstruction theory
of M(W0[n], η)st. Of course for étale charts S of M(W [n],Γ)st we
can define the notion of η-admissible as in Definition 3.3. Now let S
be an η-admissible chart of M(W [n],Γ)st and let Sη = S ×M(W [n],Γ)st

M(W0[n], η)st. As before, we let f : X → W [n] be the universal fam-
ily over S. We let l be the integer so that f−1(Dl) is where the η-
decomposition of f |Sη takes place. We fix a covering of f by charts
(Uα/Vα, fα) of the first and the second kinds, indexed by Λ. Following
our convention, we denote by U the étale covering {Uα}Λ of X . We let
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fη,α : Uη,α → W [n] be the restriction of fα to Uη,α � Uα ×S Sη. We
let Vη,α = Vα ×S Sη and let Vη be the covering {Vη,α}Λ of Sη. We let
A = Γ(OS) and let E• ≡ E(A)• be the complex constructed in Section 2
associated to the covering Λ. Now let Lη be the line bundle on Sη that
is the pullback of Lη via Sη → M(W,Γ). We form the ordinary Čech
complex

C•η � C•(Vη, Lη)(3.7)

of the invertible sheaf (line bundle) Lη over Sη associated to the covering
Vη. Let Aη = Γ(OSη). We define a homomorphism of the complex:

δk : Ek ⊗A Aη =⇒ Ck−1η � Ck−1(Vη, Lη)(3.8)

as follows: Let (a, b) ∈ E1⊗AAη be any element. As argued in the proof
of Proposition 1.16, a defines, to each α ∈ Λ, a flat extension Ũη,α/Ṽη,α of
Uη,α/Vη,α by the module Γ(OVη,α) and predeformable extensions ζη,α :
Ũη,α → W [n] of fη,α : Uη,α → W [n]. Let ρη,α : Vη,α → An+1 be the
tautological morphism (induced by S → An+1) and let ρ̃η,α : Ṽη,α →
An+1 be the composite of ζη,α and the projection W [n]α → An+1. Since
tl ◦ ρη,α = 0,

ξα(a) � d(tl ◦ ρ̃η,α − 0) ∈ Γ(Vη,α, ρ∗η,αNHl/An+1) ≡ Γ(Vη,α, Lη),

where NHl/An+1 is the normal bundle to Hl in An+1. Here we have used
the fact that ρ∗η,αNHl/An+1 is canonically isomorphic to Ll. On the other
hand, for b = {bα} with bα ∈ HomUα(f∗ΩW [n], Aη)†, bα(f∗(dtl)) ∈ I. We
define ξ(bα) = bα(f∗(dtl)). This defines the homomorphism δ1 via

δ1((a, b))α = ξα(a) + ξ(bα).(3.9)

Note that for k > 1 elements in Ek are of the form b = {bα0...αk} and we
can define δk(bα0...αk) similarly. This defines δk for k > 1. It is direct to
check that the so defined map is a homomorphism of complexes. With
this homomorphism of complexes, we can form a complex

Ekη � Ck−2η ⊕ Ek ⊗A Aη(3.10)

with the induced differential. It is clear that the statement of Lemma 1.15
holds true to E•η. Namely, for sufficiently fine admissible covering Λ of
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f , E•η is a complex of flat Aη-modules. Further, to each Aη-module I
we have the following exact sequence of complexes

0 =⇒ C•−2η ⊗Aη I =⇒ E•η ⊗Aη I =⇒ E• ⊗Aη I =⇒ 0(3.11)

which induces a long exact sequence of cohomologies

(3.12) 0 −→ h1(E•η ⊗Aη I) −→ h1(E• ⊗A I) −→ I ⊗Aη OSη(Lη)
−→ h2(E•η ⊗Aη I) −→ h2(E• ⊗A I) −→ 0.

In particular, hk(E•η ⊗Aη I) = 0 except k = 1, 2.
Proposition 3.7. First, the functor of the first order deforma-

tions of Sη is naturally isomorphic to the functor h1(E•η). Secondly,
there is a natural obstruction theory to deformation of the families of
predeformable morphisms f |Sη :X |Sη → W [n]×An+1 Hl taking values in
h2(E•η). Finally, such obstruction theory is perfect.

Proof. We will omit the proof here because it is parallel to the
treatment of the obstruction theory of M(W0,Γ). q.e.d.

Proposition 3.8. The perfect obstruction theory constructed in
Proposition 3.7 induces a perfect obstruction theory of M(W0, η), which
in turn defines a natural virtual moduli cycle [M(W0, η)]virt.

Proof. The proof is parallel to the construction of the perfect ob-
struction theory of M(W,Γ) and of the virtual moduli cycle
[M(W,Γ)]virt. We shall omit the details here. q.e.d.

We next work out the obstruction theory of M(Yrel
1 + Yrel

2 , η). We
let S = SpecA → M(W [n],Γ)st be an η-admissible chart and let f :
X → W [n] be the universal family over S. We then pick a sufficiently
fine covering (Uα/Vα, fα) indexed by Λ. Following Section 1.2, we pick
the complex [F 0 d−→F 1] as in (1.5) and pick extensions ζα as defined
before (1.18). Based on these data we can form the complex E• as in
(1.19) so that its cohomology is part of the obstruction theory of S. We
let S0 = SpecA0 = S ×M(W,Γ) M(Yrel

1 + Yrel
2 , η) and let f0 :X0 → W [n]

be the restriction of f to fibers over S0. We let l ∈ [n+1] be the integer
associated to η defined in Definition 3.3. By definition, the family f0 can
be decomposed into two families of relative stable morphisms of types
Γ1 and Γ2 respectively along a multi-section Σ ⊂ X0,node over S0. We let
U0,α = Uα ×S S0, V0,α = Vα ×S S0 and let f0,α = fα|U0,α . Note that Σ is
étale over S0. Now let X̂0 be the formal completion of X0 along Σ ⊂ X0.
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Then since Σ → S is finite and étale, and since Σ ⊂ X0 is a multiple
section of the nodal points of the fibers of X0/S0, the extension sheaf
Ext 1X0

(ΩX̂0/S0
,OX̂0

) is an invertible sheaf of OΣ-modules. We denote
this sheaf by MΣ. Then we have a natural homomorphism

Ext1X0
(ΩX0/S0

,OX0) −→ ρ∗
(Ext 1X0

(ΩX0/S0
,OX0)

) proj−→ ρ∗MΣ,

where ρ :X0 → S0 and ρ : Σ → S0 are the projections, which defines a
canonical homomorphism

F 1 ⊗A A0 −→ Ext1X0
(ΩX0/S0

,OX0) −→ ρ∗MΣ.(3.13)

Clearly, the composite of (3.13) is surjective. We let F 0
η,0 = F 0 ⊗A A0

and let F 1
η,0 be the kernel of (3.13). The module F

1
η,0 is a free A0-module

and F 0 ⊗A A0 → F 1 ⊗A A0 factor through F 0
η,0 → F 1

η,0.
We now construct the complex that will give the obstruction theory

of S0 (which is a chart of M(Yrel
1 + Yrel

2 , η)). We let E• be the complex
associated to the family f and the covering Λ mentioned before. We let
Ekη,0 � Ek ⊗A A0 for k �= 1 and let E1

η,0 be the kernel of the composite
E1⊗AA0

pr−→F 1⊗AA0 → ρ∗MΣ. Clearly, the differentials in E• induce
differentials in E•η,0.

Proposition 3.9. Lemma 1.15 holds true for the complex E•η,0.
Proposition 3.7 holds true for the charts S0 with E•η replaced by E•η,0.
Proposition 3.8 holds true for the moduli stack M(Yrel

1 + Yrel
2 , η).

Proof. We shall sketch the construction of the obstruction classes.
The remainder part of the proof is similar to that of Propositions 3.7
and 3.8 and will be omitted. Here we will follow closely the convention
introduced in the proof of Proposition 1.18. Let ξ = (B, I, ϕ) be an
object in TriS0 . Let fT :XT → W [n] be the pullback of f via T → S0,
where T = SpecB/I, and let ΣT = XT ×X0 Σ. By the definition of the
subscheme S0 ⊂ S, the formal completion of XT along ΣT is isomorphic
to Speck[[z1, z2]]/(z1z2)×ΣT , at least after shrinking S if necessary. Now
let T̃ = SpecB. Then by the deformation theory of nodal curves, we can
find a flat extension X

T̃
/T̃ of XT /T so that the formal completion of X

T̃
along ΣT is isomorphic to Speck[[z1, z2]]/(z1z2)×Σ

T̃
, where Σ

T̃
is étale

over T̃ so that Σ
T̃

×
T̃
T ≡ ΣT . In other words, the multiple section

ΣT ⊂ X extends to a multiple section Σ
T̃

⊂ X
T̃
and the extended

family X
T̃
can be decomposed along Σ

T̃
. Once we have chosen such

an extension, to each α ∈ Λ we can pick a predeformable extension
h̃α : Ũ0,α → W [n] of fT,α so that the composite Ũ0,α → W [n] → An+1
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factor through the l-th coordinate hyperplane Hl ⊂ An+1. We let bαβ
be as defined in (1.21). Then b = {bαβ} ∈ E2 ⊗A I ≡ E2

η,0 ⊗A0 I. We
define

ob(ξ) = [b] ∈ h2(E•η,0 ⊗A0 I).

It is direct to check that this defines an obstruction class. It is routine to
check that such choices of obstruction classes satisfies the base change
property. q.e.d.

Applying the basic construction of virtual moduli cycles formulated
in the previous section, we obtain cycles [M(W0, η)]virt and [M(Yrel

1 +
Yrel

2 , η)]virt.
We are now ready to state the degeneration formula of the Gromov-

Witten invariants of the family W . Let η = (Γ1,Γ2, I) be an admissible
triple in Ω. Let µi be the weight of the i-th root of Γ1 and Γ2, which
are the same. We define the multiplicity of η to be m(η) =

∏r
i=1 µi.

Lemma 3.10. We have the identity

c1(L0, s0)[M(W,Γ)]virt = [M(W0,Γ)]virt ∈ A∗M(W0,Γ).

Lemma 3.11. We have the identity

[M(W0, η)]virt = c1(Lη, sη)[M(W,Γ)]virt ∈ A∗M(W0, η).

Lemma 3.12. Under the natural isomorphism

A∗M(Yrel
1 + Yrel

2 , η) ∼= A∗M(W0, η)

induced by the homeomorphism M(Yrel
1 + Yrel

2 , η) / M(W0, η),

m(η)[M(Yrel
1 + Yrel

2 , η)]virt = [M(W0, η)]virt ∈ A∗M(W0, η).

Using the identity of C-divisors (L0, s0) = ⊗η∈Ω/∼(Lη, sη), we have
Corollary 3.13.

[M(W0,Γ)]virt =
∑
η∈Ω/∼

m(η)[M(Yrel
1 + Yrel

2 , η)]virt.

We now state how the virtual moduli cycle [M(Yrel
1 + Yrel

2 , η)]virt

is related to [M(Yrel
i ,Γi)]virt. Using the natural evaluation morphism
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qi :M(Yrel
i ,Γi)→ Dr we form the Cartesian diagram

M(Yrel
1 ,Γ1)×Dr M(Yrel

2 ,Γ2) −−−→ M(Yrel
1 ,Γ1)× M(Yrel

2 ,Γ2)� �
Dr

∆−−−→ Dr × Dr

(3.14)

Here the arrow ∆ is the diagonal morphism. Let Φη be the finite étale
morphism in (3.2), which has pure degree |Eq(η)| (see [23, Section 4]).

Lemma 3.14. We have the identity

1
|Eq(η)|Φη∗∆

!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

)
= [M(Yrel

1 + Yrel
2 , η)]virt.

We will prove these lemmas in the next section.
The main degeneration formula of the Gromov-Witten invariants of

W follows immediately from these lemmas and the first version of the
degeneration formula proved in the previous subsection.

Theorem 3.15. Let the notation be as before. Then as elements in
A∗M(W0,Γ),

[M(W0,Γ)]virt

=
∑
η∈Ω/∼

m(η)
|Eq(η)| Φη∗∆

!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

)
.

Finally, we state the numerical corollary of this theorem. Let i :
Yi → W be the inclusion and let

∗i :H
0
C(R

∗π∗QW )×k → H∗(Yi,Q)×k

be the induced pullback homomorphism. Now let η = (Γ1,Γ2, I) ∈ Ω be
any admissible triple. For i = 1 or 2, we letMΓ◦

i
be the moduli space of

stable curves of topological type Γ◦i (See the definition before (2.9)). It
is naturally a Deligne-Mumford stack. Further, we have a natural local
immersion of stacks

φη :MΓo1
× MΓo2

−→ Mg,k
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that associates to any pair of curves (C1, C2) ∈ MΓo1
× MΓo2

the gluing
C1+C2 by identifying the i-th distinguished marked point of C1 with the
i-th distinguished marked point of C2 for all i. Now let β ∈ H∗(Mg,k).
We assume β has the following Kunneth type decomposition

φ∗η(β) =
∑
j∈Kη

βη,1,j � βη,2,j , βi,j ∈ H∗(MΓoi
).

Corollary 3.16. Let W/C be the family and let Γ = (g, b, k) be as
before. Then for any closed point ξ �= 0 ∈ C, α ∈ H0

C(R
∗π∗QW )×k and

β ∈ H∗(Mg,n) as before,

ΨWξ

Γ (α(ξ), β)

=
∑
η∈Ω/∼

m(η)
|Eq(η)|

∑
j∈Kη

[
ΨY

rel
1

Γ1
(∗1α, βη,1,j) •ΨY rel

2
Γ2
(∗2α, βη,2,j)

]
0
.

Here • is the intersection of the homology groups

H∗(Dr)× H∗(Dr)
∩−→H∗(Dr)

and [γ]0 is the degree of the degree 0 part of the homology class γ ∈
H∗(Dr).

4. Proof of the main theorem

The goal of this section is to prove Lemma 3.12-3.14. In essence, the
proofs of these lemmas (except Lemma 3.12) rely on the comparison of
the virtual moduli cycles of stacks with the virtual moduli cycles of their
substacks. This is precisely the situation studied in [26, Lemma 3.4],
except that there we used the existence of certain locally free sheaves
to construct the virtual moduli cycles. To prove Lemma 3.12, we need
to study the situation more general than the one studied. In the first
subsection we will revise [26, Lemma 3.4] to cover all the situations we
need.

4.1 Comparison of the virtual moduli cycles

LetM → N be a representable morphism of stacks. In this subsection,
we assume M is a DM-stack having a perfect-obstruction theory with
the associated obstruction sheaves ObM. ForN we need to consider two
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possibilities: One is when N is a DM-stack having a perfect-obstruction
theory with the obstruction sheaf ObN. The other is when N is a closed
substack of a smooth Artin stackQ defined by the vanishing of a section
s of a vector bundle F on Q.
Let S = {Sα}Λ be an atlas of N and let {(F•α, obSα)}Λ be the data

associated to the perfect-obstruction theory of N. In case N is a DM-
stack this is specified in the Definition 2.1. In case N is an Artin stack,
we assume that there is an atlas S = {Sα}Λ of Q so that Sα = Sα ×Q

N. Then we simply take F•α = [F1
α → F2

α] to be F1
α = OSα(TSα),

F2
α = OSα(F |Sα) and the arrow F1

α → F2
α to be the one induced by

the differential of the section s ∈ H0(F ). The obstruction assignment
obSα taking values in ObSα = h2(F•α) is the obvious one induced by
the defining equation s. Since M → N is representable, Sα ×N M
is a scheme. For each α ∈ Λ we pick an affine étale universal open
Rα → Sα ×N M. Without loss of generality, we can assume {Rα}Λ
is a covering of M in the sense that the image Rα � ρα(Rα) of the
tautological pα :Rα → M is an open substack and the collection {Rα}Λ
forms an open covering ofM. Note that when N is a DM-stack, Rα →
M are étale and then {Rα}Λ forms an étale cover of M. In case N is
an Artin stack, then Rα → M are smooth morphisms. In this case we
shall view {Rα}Λ as an atlas in the smooth site16 of M.
We let {(E•α, obRα)}Λ be the date given by the perfect obstruction

theory ofM associated to the covering {Rα}Λ. Namely, each (E•α, obRα)
is a perfect obstruction theory of Rα, the sheaves Coker{E1

α → E2
α}

descends to the sheaf ObM of OM-modules and the obstruction assign-
ments {obRα} are compatible over all Rαβ = Rα ×M Rβ.
We next assume Rα → Sα admits a perfect relative obstruction

theory given by (L•α, obRα/Sα) as defined in Definition 1.11. We say
M → N admits a perfect relative obstruction theory if we can choose
{(L•α, obRα/Sα)}Λ so that the relative obstruction sheaves ObRα/Sα �
Coker{L1

α → L2
α} descends to a global sheaf on M and the obstruction

assignments obRα/Sα are compatible on the overlaps Rαβ .

Definition 4.1. The perfect (relative) obstruction theories {E•α,
obRα}, {F•α, obSα} and {L•α, obRα/Sα} are said to be compatible if to
each α ∈ Λ there is an exact triangle of complexes

=⇒ L•α =⇒ E•α =⇒ F•α ⊗OSα ORα =⇒ L•+1
α =⇒(4.1)

16Namely, the open covering are univeral open smooth morphisms.
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which induces a long exact sequence of cohomologies

→ hi(L•α ⊗ I) τ1,i−→hi(E•α ⊗ I) τ2,i−→hi(F•α ⊗OSα I) τ0,i+1−→ hi+1(L•α ⊗ I)→
(4.2)

for any sheaf of ORα-modules I that satisfies the following properties:
(1) The first part of the above exact sequence is identical to the exact

sequence

0 −→ Def1Rα/Sα(I) −→ Def1Rα(I) −→ Def1Sα(I) −→

under the canonical isomorphisms Def1· (I) = h1(· ⊗ I) given by
the definition of the perfect obstruction theories.

(2) Let ξ be any object in TriRα , which is also an object in TriSα . Then
under the arrow τ2,2 in (4.2) we have obSα(ξ) = τ2,2

(
obRα(ξ)

)
.

(3) Let ξ = (B, I, ϕ0) be an object in TriRα/Sα , which is also an object
in TriRα . Then obRα(ξ) = τ2,1

(
obRα/Sα(ξ)

)
. Further, suppose

obRα(ξ) = 0 and ϕ0 : SpecB/I → Rα extends to ϕ : SpecB →
Rα. Let e ∈ h1(F•α ⊗B/I I) be the difference of the tautological
SpecB → SpecSα and the composite of SpecB

ϕ−→ SpecRα and
SpecRα

pr−→ SpecSα. Then obRα/Sα(ξ) = τ0,2(e).

Finally, the collection of exact sequences h2(L•α)→ h2(E•α)→ h2(F•α)
−→ 0 descends to an exact sequence of sheaves

ObM/N −→ ObM −→ ObN ⊗ON
OM −→ 0.

The goal of this subsection is to show that with the data given in
Definition 4.1, we can construct a class [M,N]virt ∈ A∗M, called the
relative virtual moduli cycle. We will then show that it is equal to
[M]virt in A∗M. This allows us to give a different interpretation of
[M]virt, useful in the proof of the key lemmas in the previous section.
We first study the local situation. Let Rα → M and Sα → N be

respective charts as described before. Let p ∈ M be any closed point,
q ∈ N be the image of p, p ∈ Rα be a lift of p ∈ M and q ∈ Sα
be the image of p. We let T1 = h1(E•α ⊗ kp), T2 = h1(F•α ⊗ kq) and let
T1/2 = h1(L•α⊗kp). Similarly, we let O1 = h2(E•α⊗kp), O2 = h2(F•α⊗kq)
and let O1/2 = h2(L•α ⊗ kp), all implicitly depending on the lift p. Note
that they fit into the exact sequence

0 −→ T1/2 −→T1 −→T2
δ−→O1/2 −→O1 −→O2 −→ 0(4.3)
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induced by (4.1). We now let T = T1 ⊕ T2/ ker(δ) and pick a surjective
homomorphism T → T2 that is an extension of T1 → T2. Next we let
O = O1⊕ Im(δ). We then pick an injective homomorphism η :O1/2 → O
so that the composite O1/2 → O → O1/2 is the identity map. This way
we have two exact sequences

0 → T1/2 → T → T2 → 0 and 0→ O1/2 → O → O2 → 0.(4.4)

Further, with various homomorphisms chosen and the isomorphism
T2/ ker(δ) ∼= Im(δ), we have the following induced exact sequence

0 −→ T1 −→ T −→ O −→ O1 −→ 0.

In the following for any vector space V we denote by k[[V ]] the ring of
formal power series limn⊕ni=0S

i(V ). We now let

f ∈ k[[T∨]]⊗ O, g ∈ k[[T∨2 ]]⊗ O2 and h ∈ k[[T∨]]/(g)⊗ O1/2(4.5)

be the Kuranishi maps of the (relative) obstruction theories of Rα, of Sα
and of Rα/Sα at p (or q) respectively (see [26, Lemma 3.10]). By abuse
of notation, we denote by (g) the idea generated by the components of
g in k[[T∨2 ]] and in k[[T∨]] via the inclusion k[[T∨2 ]]→ k[[T∨]].

Lemma 4.2. We can choose the Kuranishi maps f , g and h so
that:

(1) ϕ1(fp) = τ(gp) under the naturally induced maps ϕ1 :k[[T∨]]⊗O →
k[[T∨]]⊗ O2 and τ :k[[T∨2 ]]⊗ O2 → k[[T∨]]⊗ O2.

(2) The differential dhp(0) : T → O1/2 is identical to the composite
T → T2/ ker(δ)→ O1/2 induced by δ in (4.3).

(3) Let h̃ and f̃ in k[[T∨1/2]]/(g)⊗O be the images of h and f under the

obvious maps induced by the arrows mentioned before, then f̃ = h̃.

Proof. The proof follows from the construction of Kuranishi maps,
as was demonstrated in [26, Lemma 3.10]. q.e.d.

We now let X = Speck[[T∨]], V1/2 = O1/2 × X, V = O × X and
let V2 = O2 × X, all viewed as vector bundles (or their total spaces)
over X. We let ρ1 : V1/2 → V and ρ2 : V → V2 be the vector bundle
homomorphisms induced by arrows in (4.4). Then V2 is the quotient
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vector bundle of V by V1/2. We consider the subscheme Γ ⊂ V1 that is
the graph of f , consider Y = V1/2 ×X Γ ⊂ V1/2 ×X V and consider

Θ1 = Ṽ1/2 ×V1/2×XV Y ⊂ Y, Θ2 = Ṽ1 ×V1/2×XV Y ⊂ Y.

Here Ṽ1/2 is the image scheme of the immersion 1V1/2
× ρ1 : V1/2 →

V1/2 ×X V and Ṽ � 0V1/2
× V ⊂ V1/2 ×X V , where 0V1/2

is the zero
section of V1/2. Note that Ṽ1/2 and Ṽ are isomorphic to V1/2 and V ,
respectively. Following [26, Page 145], we denote the normal cone to
CΘ2/Y ×Y Θ1 in CΘ2/Y

17 by B(p)1 and denote the normal cone to
CΘ1/Y ×Y Θ2 in CΘ1/Y by B(p)2. Both B(p)1 and B(p)2 are subcones
in V̂1/2 ×X̂ V̂ , where X̂ = Speck[[T∨1 ]]/(f) and V̂i = Vi×X X̂. As argued
in [26, 146], based on the work of [38] (see also the recent [21]) there is
a canonical rational equivalence18 Q(p) ∈ W∗(V̂1/2 ×X̂ V̂ ) so that

∂0Q(p) = B(p)1 and ∂∞Q(p) = B(p)2.(4.6)

The cones B(p)1 and B(p)2 have the following interpretations as
shown in [26, page 145]. Let D(p)1 ⊂ V̂ be the normal cone to X̂ in X,
then

B(p)1 = φ∗1D(p)1(4.7)

where φ1 : V̂1/2 ×X̂ V̂ −→ V̂ is the projection. Next, we let W =
Speck[[T∨2 ]] and let Ŵ = Speck[[T∨2 ]]/(g). We then form the normal
cone to CŴ/W ×W X̂ in CŴ/W ×W X, denoted by D(p)2. It is naturally
a subcone in V̂1/2 ×X̂ V̂2. Then

B(p)2 = φ∗2D(p)2,(4.8)

where φ2 = (1, ρ2) : V̂1/2 ×X̂ V̂ −→ V̂1/2 ×X̂ V̂2.
We caution that all the objects so far constructed depends on the

lift p, on the choices of arrows before (4.4) and on the Kuranishi maps.
Later we will show that they are canonical in certain degree, up to the
symmetry Aut(p).

17For closed subscheme A ⊂ B, CA/B is the normal cone to A in B.
18 In this paper we use the convention that a rational equivalence Q ∈ W∗Z is

a cycle in Z∗(Z × P1) so that all its irreducible components are flat over P1. We
then define ∂0Q and ∂∞Q to be Q ∩ Z × {0} and Q ∩ Z × {∞} respectively. In case
ϕ : Z → W is a flat morphism, we denote by ϕ∗Q the flat pullback of the rational
equivalence.
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In the following, we first construct the relative moduli cycle [M,N]virt

and several related cycles based on the collection of the infinitesimal
models D(p)2, etc. First at each p ∈ M the cone

D(p)2 ×X̂ 0 ⊂ (V̂1/2 ×X̂ V̂2)×X 0
is independent of the choices of the Kuranishi maps f , g and h and is
invariant under the natural Aut(p) action. (Here X̂ is the subscheme
defined before that depends on p implicitly.) Similar statements hold
for the cycles D(p)1 ∈ Z∗V̂ , the cycles B(p)i ∈ Z∗(V̂1/2 ×X̂ V̂ ) and
the rational equivalence Q(p) ∈ W∗(V̂1/2 ×X̂ V̂ ). These were proved
in [26, Section 3]. Secondly, for each α we pick a pair of locally free
subsheaves19 Lα ⊂ Eα over Rα, viewed as a complex [Lα → Eα], and a
surjective homomorphism of complexes

[Lα → Eα] =⇒ [ObRα/Sα → ObRα ].(4.9)

For simplicity, we denote by Wα the vector bundle Vect(Lα ⊕ Eα). As
shown in [26, Section 3] there is a unique cycle Bi,α ∈ Z∗Wα so that
the collection Bi = {(Rα, Bi,α,Lα⊕Eα)}Λ satisfies the cycle consistency
criteria for the infinitesimal models B(p)i over the pair (M,ObM/N ⊕
ObM). We let [B1] and [B2] be the associated class in A∗M following
the basic construction. Next we let Fα � Eα/Lα be the quotient sheaf,
which is locally free by our choice. Then ObSα ⊗OSα ORα is canonically
a quotient sheaf of Fα. Again following [26, Section 3] we can find a
unique cone cycle D2,α ⊂ Vect(Lα ⊕ Fα) so that the collection D2 =
{(Rα,D2,α,Lα ⊕ Fα)} satisfies the cycle consistency criteria with the
infinitesimal models D(p)2 ⊂ V̂1/2 ×X̂ V̂2 over the pair (M,ObM/N ⊕
ρ∗ObN), where ρ :M → N is the projection. Thus by applying the basic
construction to this collection we obtain the class [D2] ∈ A∗M. We will
call the class [D2] the relative cycle and denoted it by [M,N]virt.

Lemma 4.3. We have [M]virt = [M,N]virt in A∗M.

To prove the lemma we need to construct a rational equivalence
[Q] ∈ W∗M (or equivalently a class [Q] ∈ A∗M × P1) so that ∂[Q]
provides the identity in the lemma. Here when [Q] is a class, we define
∂[Q] = ∂0[Q] − ∂∞[Q] with ∂0[Q] the image of the Gysin map 0![Q]
associated to 0 → P1. The ∂∞ is defined similarly. The proof is parallel
to that of [26, Lemma 3.4] and will occupy the rest of this subsection.

19In this paper by a pair of locally free sheaves we mean a locally free subsheaf of
a locally free sheaf with locally free quotient sheaf, all of finite ranks.
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We need to provide a revised proof since the current construction does
not rely on the existence of a global vector bundle as was assumed in
[26].
We first set up the notation relevant to the construction of the cycles

[Bi], etc, following the basic construction of the virtual cycles. First, in
constructing the class [Bi] we first built the index set Ξ(Bi). Each a ∈
Ξ(Bi) associates to an integral closed substack Ya ⊂ M, a multiplicity
ma, a maximal open substack a :Y0

a → Ya so that ∗aObM/N⊕∗aObM is
locally free. Over Y0

a we have a canonical cone representative N
0
a ⊂ F0

a,
where F0

a is the vector bundle (stack) Vect(
∗
aObM/N ⊕ ∗ObM) over

Y0
a. We then pick a projective variety ϕa : Ya → Ya generically finite

over Ya, a locally free sheaf Fa of OYa-modules and a quotient sheaf
homomorphism Fa → ϕ∗a(ObM/N ⊕ ObM). We form the vector bundle
Fa = Vect(Fa) with the induced flat morphism Fa|ϕ−1

a (Y0
a)

→ F0
a. We

let Na ⊂ Fa be the closure of the flat pullback of N0
a. Then [Bi] is the

sum of maξ(a) over all a ∈ Ξ(Bi), where ξ(a) is deg(ϕa)−1ϕa∗0!Fa [Na].
We set up the notation for the cycle [Di] according to the same

rule. We first prove [B1] = [M]virt. This identity follows from the
relation (4.7). The actual proof goes as follows: First the class [D1] =
[M]virt (see [26, Section 3]). From (4.7) the index sets Ξ(B1) ≡ Ξ(D1)
naturally. For a ∈ Ξ(B1) with a ∈ Ξ(D1) the corresponding element,
their base substacks Ya = Ya. Further the intrinsic representative N0

a

is the flat pullback of N0
a under an obvious homomorphism of vector

bundles. Based on these, we can choose Ya = Ya, choose locally free
sheaves Fa = Fa and then the cone representatives Na ≡ Na. This
proves ξ(a) = ξ(a) and hence [B1] = [D1] = [M]virt. Since the proof is
straightforward, we will omit the details here. For the same reason, we
prove [B2] = [M,N]virt based on the identity (4.8). Again we will omit
the details here.
We now construct the required cycle [Q] so that

∂0[Q] = [B1] and ∂∞[Q] = [B2].(4.10)

For each α ∈ Λ we fix the pair Lα ⊂ Eα over Rα as in (4.9). As before
we let Wα = Vect(Lα ⊕ Eα). We claim that we can find a collection
of rational equivalence Qα ⊂ W∗Wα indexed by α ∈ Λ that satisfy the
following existence lemma.

Lemma 4.4. Let α ∈ Λ be any element. Then there is a unique
rational equivalence Qα ∈ W∗Wα of which the following holds. Let p ∈
M be any point and let p be a lift of p in some chart Rβ. We let



a degeneration formula of gw-invariants 261

V̂1/2, V̂ and V̂2 be the vector bundles over X̂ (associated to p) defined
before and after Lemma 4.2. Let Rα be the chart, let Rα,p = Rα ×M p
and let R̂α be the formal completion of Rα along Rα,p. We also pick a
morphism R̂α → X̂ that commutes with R̂α → M and X̂ → M. Now
let O1/2 ↪→ O be the pair in (4.4) associated to p. Then up to Aut(p)
there are canonical induced homomorphisms of vector bundles over Rα,p

O1/2 × Rα,p → h2(Lα)|Rα,p , O × Rα,p → h2(Eα)|Rα,p and

Lα|Rα,p → O1/2 × Rα,p.

We then pick a surjective homomorphism ϕ2 : Eα|Rα,p → O × Rα,p so
that the following diagram of the complexes of vector bundles over Rα,p

[Lα|Rα,p → Eα|Rα,p ] ��

�������������������

�����������������
[O1/2 × Rα,p → O × Rα,p]

��
[h2(L•α)|Rα,p → h2(E•α)|Rα,p ]

(4.11)

is commutative. Then there is a vector bundle homomorphism

Φ1 :Wα ×Rα R̂α −→ (V̂1/2 ×X̂ V̂ )×X̂ R̂α

(recall Wα = Vect(Lα ⊕ Eα)) extending the obvious homomorphism

Wα ×Rα Rα,p −→ (V1/2 × V )× Rα,p

induced by the ϕ2 before (4.11) so that

Φ∗1(ψ
∗Q(p)) = Φ∗2(Qα),

where ψ : (V̂1/2 ×X̂ V̂ )×X̂ R̂α → V̂1/2 ×X̂ V̂ and Φ2 :Wα ×Rα R̂α → Wα

are the obvious (flat) projections.

We will call this lemma the rational equivalence consistency criteria.
This lemma is proved in [26, Section 3] for the case where M is a

quotient stack. The general case is exactly the same. We will not repeat
the argument here.
We now fix the collection Q = {(Rα, Qα,Lα⊕Eα)}Λ. To each α ∈ Λ

we let Ξ(Qα) be the set of irreducible components of Qα. For each
a ∈ Ξ(Qα), we let Ta ⊂ Qα be the corresponding irreducible component,
let ma be the multiplicity of Qα along Ta and let Ya ⊂ M be the
base substack of a, which is the closure of the image of Ta → M. We
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then let ιa :Y0
a → Ya be an open substack so that ι∗aObM/N, ι∗aObM

and K0
a = ker{ι∗aObM/N → ι∗aObM} are locally free. We then pick a

homomorphism

η : ι∗aObM/N → K0
a(4.12)

so that the composite K0
a → ι∗aObM/N → K0

a is the identity. (Such lift
exists possibly after shrinking Y0

a ⊂ Y if necessary.) We let V0
1/2,a =

Vect(ι∗aObM/N), let V0
a = Vect(K0

a⊕ ι∗aObM) and let η :V0
1/2,a → V0

a be
the immersion induced by η and the tautological ObM/N → ObM.
We now construct the intrinsic representative of a as a cycle in F0

a×
P1, where F0

a = V0
1/2,a ×Y0

a
V0
a is a vector bundle stack over Y

0
a. Let

pr :Wα → Rα be the projection. It is easy to see that for some dense
open subset U of pr(Ta) ⊂ Ra we can lift the tautological U → Ya
to g : U → Y0

a and lift the left vertical arrow (below) to surjective
horizontal arrow (the top one) as shown in the commutative diagram

[Lα → Eα]⊗ORα OU lift−−−→ g∗[ι∗aObM/N → K0
a ⊕ ι∗aObM]� �

g∗[ObM/N → ObM/N] −−−→ g∗[ι∗aObM/N → ι∗aObM/N].

(4.13)

Note that the other two arrows are tautological ones. We let

(Wα × P1)|U×P1 −→ F0
a × P1(4.14)

be the induced projection. Then an easy argument shows that the
statement in Lemma 4.4 implies that there is a reduced and irreducible
cycle Q0

a,η ⊂ F0
a×P1 so that the restriction of Ta to fibers over U×P1 is

a dense open subset of the flat pullback of Q0
a,η via the arrow in (4.14).

We call Q0
a,η an intrinsic representative of a.

Once we have constructed the intrinsic representative of a ∈ Ξ(Qα),
we can define an equivalence relation on ∪Ξ(Qα) as we did before. Let
a ∈ Ξ(Qα) and b ∈ Ξ(Qβ) be two elements. In caseYa �= Yb, then a �∼ b.
In case Ya = Yb, we let Q0

a,η and Q
0
b,η be the respective representatives

of a and b, based on the same η in (4.12). Then we say a ∼ b ifQ0
a,η∩Q0

b,η

is dense in both Q0
a,η and Q0

b,η. This defines an equivalence relation.
Further, whenever a ∼ b then ma = mb. Now let Ξ(Q) be the set of
equivalence classes. For any a ∈ Ξ(Q), we pick a projective variety Ya
and a generically finite morphism ϕa :Ya → Ya. We then pick a pair of
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locally free subsheaves La ↪→ Ea over Ya, a surjective homomorphism of
complexes

[La → Ea] =⇒ ϕ∗a[ObM/N → ObM]

and a lift (of the above arrow)

[La → Ea] =⇒ ϕ∗a[ObM/N → K0
a ⊕ ObM]

over a dense open subset Y 0
a ⊂ Ya. After that, we letWa = Vect(La⊕Ea)

and let ja :Wa|Y 0
a

→ F0
a be the induced morphism. By shrinking Y

0
a

if necessary, we can assume that Wa|Y 0
a

→ F0
a is flat. With all these

chosen, we let Qa be the closure in Wa ×P1 of the flat pullback of Q0
a,η

and define ξ(a) = deg(ϕa)−1ϕa∗0!Wa
[Qa]. We define

[Q] =
∑

a∈Ξ(Q)
maξ(a) ∈ A∗M × P1.

It remains to prove the identity

∂∞[Q] =
∑

a∈Ξ(Q)
ma∂∞ξ(a) = [B2] ∈ A∗M(4.15)

and the similar identity with ∂∞ (resp. [B2]) replaced by ∂0 (resp. [B1]).
We will prove the identity (4.15). The proof of the other identity is
similar. To achieve this, we will define a function µ : Ξ(Q)×Ξ(B2)→ Q

that satisfies ∑
a∈Ξ(Q)

maµ(a, b) = mb, ∀ b ∈ Ξ(B2)(4.16)

and

∂∞ξ(a) =
∑

b∈Ξ(B2)

µ(a, b)ξ(b), ∀ a ∈ Ξ(Q).(4.17)

Once these two are established, then

∂∞[Q] =
∑

ma ∂∞ξ(a) =
∑

ma

∑
µ(a, b) ξ(b) =

∑
mb ξ(b) = [B2],

which is (4.15).
We first construct the function µ. We begin with any (smooth) chart

Rα. We let Lα ⊕ Eα be the locally free sheaves on Rα chosen before.
For simplicity we denote by Wα the sheaf Lα ⊕ Eα and continue to
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denote by Wα the vector bundle Vect(Lα ⊕ Eα). We let B2,α ⊂ Wα and
Qα ⊂ Wα ×P1 be the cycles constructed before. For each a ∈ Ξ(Q) we
let Qα,a be the closure in Wα×P1 of the pullback of Q0

a,η via the arrow
in (4.14). The cycle Qα,a is also the union of irreducible components
of Qα in the equivalence class a. With this choice of Qα,a, we have the
decomposition

Qα =
∑

a∈Ξ(Q)
maQα,a.(4.18)

Similarly, we have a canonical decomposition

B2,α =
∑

b∈Ξ(B2)

mbB2,α,b.

As before, we let Ξ(B2,α) be the index set of irreducible components
of B2,α. For c ∈ Ξ(B2,α), we denote by Tc the corresponding compo-
nent. Then because ∂∞Qα = B2,α, there is a unique function µα(a, ·) :
Ξ(B2,α)→ Z so that ∂∞Qα,a =

∑
µα(a, c)Tc. Again, by cycle (rational

equivalence) consistency criteria and the invariance of the cycle under
Aut(p), we conclude that whenever c1 ∼ c2 then µα(a, c1) = µα(a, c2).
Thus µα(a, ·) descends to a function µα(a, ·) from Ξ(B2) to Z. Finally,
for b ∈ Ξ(B2) we define B2,α,b to be the union of Tc for those c ∈ Ξ(B2,α)
such that c ∼ b. Then we have the identity

∂∞Qα,a =
∑

b∈Ξ(B2)

µα(a, b)B2,α,b.

For the same reason whenever Rα ×M Rβ ×M Yb �= ∅, then µα(a, b) =
µβ(a, b). Hence, we can define µ(a, b) to be µα(a, b) for those α so that
Rα ×M Yb �= ∅. Then the identity (4.16) follows from collecting term
B2,α,b in∑

b∈Ξ(B2)

mbB2,α,b = B2,α = ∂∞Qα =
∑
a∈Ξ(Q

ma

∑
b∈Ξ(B2)

µ(a, b)B2,α,b

for some α so that Rα ×M Yb �= ∅.
We now investigate (4.17). Let a ∈ Ξ(Q) be any element, let ϕa :

Ya → Ya be the generically finite morphism and let La ⊂ Ea be the
pair of sheaves chosen before. We still denote by Wa the vector bundle
Vect(La ⊕ Ea). We let Qa ∈ W∗Wa be the representative of a and let
∂∞Qa =

∑
miDi be the decomposition into irreducible components.
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Since Qa → M factor through Ya ⊂ M, all Di lie over Ya. We now
let A ⊂ Ya be a closed integral substack. We let ΥA be (the index set
of) those Di so that the image Di → M is exactly A. Similarly we let
Ξ(B2)A be those b ∈ Ξ(B2) so that Yb = A. Clearly if we can show
that

deg(ϕa)−1
∑
i∈ΥA

mi ϕa∗0!Wa
[Di] =

∑
b∈Ξ(B2)A

µ(a, b) ξ(b),(4.19)

since A ⊂ Ya is arbitrary, (4.17) will follow immediately.
In the remainder of this section we will prove the identity (4.19) for

any pair (a,A). We pick an étale ϕU :U → Ya so that U ×Ya A → A
is dominant. We then pick a pair of locally free sheaves LU ⊂ EU and
surjective homomorphisms φ1 and φ2 of complexes as shown that make
the diagram

[LU → EU ] φ1−−−→ ϕ∗U [ι
∗
aObM/N → K0

a ⊕ ι∗aObM]�φ2

�
ϕ∗U [ObM/N → ObM] −−−→ ϕ∗U [ι

∗
aObM/N → ι∗aObM]

commutative. Here the top-right corner is the complex in (4.13) and
the right vertical arrow is the standard projection. As before, we let
WU be the vector bundle Vect(LU ⊕ EU ). Then the homomorphism φ1
defines a flat morphism WU |ϕ−1

U (Y0
a)

→ F0
a. We let QU ⊂ W∗WU be the

closure of the flat pullback of Q0
a,η ∈ W∗F0

a.
We next consider the projections

q1 :U ×Ya Ya → U and q̃1 :WU ×Ya Ya → WU .

We let W̃ ⊂ WU ×Ya Ya be a dense open subset so that the tautological
W̃ → Ya factor through Y0

a and W̃ → F0
a is quasi-finite. We then let

Q̃U be the closure in (WU ×Ya Ya)×P1 of the flat pullback of Q0
a,η via

the obvious W̃ → F0
a. Then since Q

0
a,η is dominant over Y

0
a and since

q̃1 is proper, we have q̃1∗(Q̃U ) = deg(ϕa)QU and then

q̃1∗(∂∞Q̃U ) = ∂∞q̃1∗(Q̃U ) = deg(ϕa)∂∞QU .(4.20)

For the convenience of the readers, we list the related rational equiv-
alence relations constructed:

Q0
a,η ∈ W∗F0

a, QU ∈ W∗WU , Q̃U ∈ W∗(WU ×Ya Ya) and Q
′ ∈ W∗W.
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(Q′ will be constructed in (4.23).) We now let Υ (resp. Υ̃) be the (index)
set of those irreducible components of ∂∞QU (resp. ∂∞Q̃U ) that lie over
and dominate A. For i ∈ Υ or Υ̃ we denote by Ti the corresponding
component and by mi the multiplicity of QU or Q̃U along Ti. We need
to divide Υ̃ into two parts: One is Υ̃1 which consists of those Ti so that
q̃1∗(Ti) �= 0. We let Υ̃0 = Υ̃ − Υ̃1. Because of (4.20), there is a map
λ : Υ̃1 → Υ so that under q̃1∗ the component Ti is mapped onto Tλ(c),
say via ψi,λ(i) :Ti → Tλ(i). Then (4.20) implies∑

i∈λ−1(j)

deg(ψi,j) = deg(ϕa), j ∈ Υ.(4.21)

We now compare the collection Υ̃ with the collection ΥA. We let p1
and p2 be the projections of U ×Ya Ya to U and Ya, respectively. We
pick a pair of locally free sheaves L ↪→ E on U ×Ya Ya so that there are
two surjective homomorphisms φ1 and φ2 of complexes as shown in the
commutative diagram

[L → E ] φ1 ��

φ2

��

p∗2[La → Ea]

��
p∗1[LU → EU ] �� [ι∗aObM/N → K0

a ⊕ ι∗aObM] �� K0
a ⊕ ObM|Y0

a
].

(4.22)

Here the two remaining arrows in the diagram are the ones chosen be-
fore. We let W be the vector bundle Vect(L ⊕ E) over U ×Ya Ya and
let ζ1 :W → WU ×Ya Ya and ζ2 :W → Wa be the morphisms to vec-
tor bundles over U ×Ya Ya and Ya induced by φ1 and φ2, respectively.
The map ζ1 is obviously smooth whose fibers are vector spaces. Since
U ×Ya Ya → Ya is étale, ζ2 is also smooth with affine fibers. Further,
because of the commutative diagram (4.22) and the rational equivalence
consistency criteria, the flat pullback of QU via ζ1 and the flat pullback
of Qa via ζ2 are identical over a dense open subset U ⊂ U ×Ya Ya that
is flat over both U and Ya. Hence since both QU and Qa are closed and
since all their irreducible components dominate Ya,

Q′ � ζ∗1 (QU ) = ζ∗2 (Qa).(4.23)

We now let Υ′ be the set of those irreducible components of ∂∞Q′ that
lie over and dominate A. Since the fibers of ζ1 are vector spaces, Υ′ is
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naturally identical to Υ̃, say via λ′ : Υ′ → Υ̃. Further, for each i ∈ Υ′
the component Ti is a vector bundle over Tλ′(i). On the other hand,
since p2 :U ×Ya Ya → Ya is smooth, each irreducible component of ∂∞Q′

is a component of the flat pullback of a Ti for some i ∈ ΥA. Thus there
is a map λa :Υ′ → ΥA so that for each i ∈ ΥA the union

∑
j∈λ−1

a (i) Tj is
exactly the pullback of Ti. For i ∈ Υ′ and j ∈ λa(i), we let ϕi,j :Ti → Tj
be the tautological map.
We are now ready to prove the identity (4.19). For each i ∈ Υ′, we

let b(Ti) be the image of Ti → U×Ya Ya. We pick a projective variety Zi
so that a dense open subset Z0

i ⊂ Zi is a finite branched cover of b(Ti)
and the induced Z0

i → A extends to ϕi :Zi → A. We then pick a pair of
locally free sheaves Li ⊂ Ei over Zi and a surjective homomorphism of
complexes φ′1 that lifts to a surjective φ′2 as shown in the commutative
diagram

[Li → Ei] φ′2−−−→
[
L|Z0

i
→ E|Z0

i

]
�φ′1 �

ϕ∗i [ObM/N → ObM] −−−→ ϕ∗i
[
ObM/N|Z0

i
→ ObM|Z0

i

]
.

Then following the definition of ξ we let Wi = Vect(Li ⊕ Ei) and let
Ci ⊂ Wi × P1 be the closure of the flat pullback of Ti ⊂ W |Z0

i
× P1

via the induced Wi|Z0
i

→ W |Z0
i
. We then define (the non-normalized)

ξ(i) = ϕi∗0!Wi
[Ci] ∈ A∗M × P1.

For i ∈ Υ, Υ̃ or ΥA we define the variety Z0
i to be the image of Ti in

U , in U ×Ya Ya or Ya respectively, and then define ϕi :Zi → A and the
class ξ(i) along the same line. We let ψU,A be the induced morphism
U ×Ya A → A. We have the following lemma concerning the relations
λ : Υ̃1 → Υ, λ′ :Υ′ → Υ̃ and λa :Υ′ → ΥA defined before.

Lemma 4.5. The following relations hold:

1. For each i ∈ Υ′ we have ξ(i) = ξ(λ′(i)).

2. For each i ∈ Υ̃ we have deg(ϕi,λa(i)) ξ(λa(i)) = ξ(i) and for any
j ∈ ΥA we have

∑
i∈λ−1

a (j) deg(ϕi,j) = deg(ψU,A).

3. For any i ∈ Υ̃1 we have deg(ψi,λ(i)) ξ(λ(i)) = ξ(i).

4. For i ∈ Υ̃0 we have ξ(i) = 0.
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Proof. The proof of (1) is parallel to the proof of Lemma 2.6, using
the fact that the fibers of ζ1 are vector spaces. We will omit the proof
here. The proof of the identity in (2) concerning ξ(·) is similar and
will be omitted too. The identity concerning the degrees in (2) follows
from the fact that U ×Ya Ya → Ya is étale. We now prove (3). Let
i ∈ Υ̃ and j = λ(i) ∈ Υ. We let Z0

i ⊂ Zi and Z0
j ⊂ Zj be the pair of

varieties constructed in defining the classes ξ(i) and ξ(j). By definition,
there is a canonical dominant morphism Z0

i → Z0
j . Hence without loss of

generality we can assume that it extends to ρ :Zi → Zj . With this choice
of Zi and Zj , we can choose the pairs of sheaves Li ⊂ Ei and Lj ⊂ Ej
be so that the former is the pullback of the later via ρ. Then because
of the relation (4.20), the cycle representatives Ci ∈ Z∗Vect(Li ⊕ Ei)
and Cj ∈ Z∗Vect(Lj ⊕ Ej) satisfies ρ̃∗Ci = deg(ψi,j)Cj . Here we used
the fact that Ci is supported on a single variety. This relation implies
(3) immediately. The proof of (4) is parallel and will be omitted. This
proves the lemma. q.e.d.

It follows from the lemma that

deg(ψU,A)
∑
i∈ΥA

mi 0!Wa
[Di] = deg(ψU,A)

∑
i∈ΥA

mi ξ(i) =
∑
j∈Υ′

mj ξ(j).

Here we used (2) to derive the last identity. Because ξ(i) = 0 for i ∈ Υ̃0,
by (1) of the lemma the right hand side above is∑

i∈Υ̃1

mi ξ(i) =
∑
i∈Υ̃1

deg(ψi,λ(i))mi ξ(λ(i)) = deg(ϕa)
∑
i∈Υ

mi ξ(i)

= deg(ϕa) deg(ψU,A)
∑

b∈Ξ(B2)A

µ(a, b)ξ(b).

Here the first equality follows from (3) in the lemma, the second equality
follows from (4.21) and the last identity follows from the definition of
µ(a, b), using the fact that U is étale over Ya. This proves the identity
(4.19) and hence completes the proof of Lemma 4.3. q.e.d.

4.2 Applications

In this subsection, we will study three cases of relative obstruction the-
ories and derive some identities.
We first study the case where N is a DM-stack and M → N is

a substack defined by the vanishing of a C-divisor (L, s). Namely if
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Sα → N is a chart (in an atlas Λ) and (Lα, sα) is the associated C-
divisor on Sα, thenM×NSα is defined by the vanishing of sα. We denote
M×NSα by Rα. We claim that there is a canonical relative obstruction
theory of Rα/Sα taking values in the sheaf ORα(Lα) (= ORα(Lα|Rα)).
Since Rα is a subscheme of Sα, the relative first order deformations
Def1Rα/Sα = 0. Now let ξ = (B, I, ϕ) be any object in TriRα/Sα . Since
B is a Γ(OSα)-algebra, its associated morphism φ : SpecB → Sα is an
extension of SpecB/I → Sα. We consider the section sα ◦ φ of φ∗Lα.
Since sα◦φ|SpecB/I ≡ 0 ∈ Γ(ϕ∗Lα), sα◦φ is an element in Γ(Rα, Lα)⊗I.
We define this element to be the relative obstruction class obRα/Sα(ξ).
Of course, obRα/Sα(ξ) = 0 if and only if φ :SpecB → Sα factor through
Rα ⊂ Sα. Since Rα → Sα is an immersion, ϕ extends to SpecB → Rα
as Sα-morphism if and only if φ already factor through Rα ⊂ Sα. This
proves that obRα/Sα is an obstruction assignment. Since (L, s) is a C-
divisor on N, this defines a relative obstruction theory of M/N.
Now assume both M and N have perfect obstruction theories pro-

vided by the data {E•α, obRα}Λ and {F•α, obRα/Sα}Λ. We assume further
that the obstruction theories of M and N are compatible to the rel-
ative obstruction theory of M/N in the sense of Definition 4.1 with
L•α = [0→ ORα(Lα)].

Lemma 4.6.
Let the notation be as before. Then [M]virt = c1(L, s)[N]virt.

Proof. We will follow the notation developed before and after the
Lemma 4.2. Let p ∈ N be any point, Sα be an étale chart of N with
a lift p ∈ Sα of p. We let T2 = h1(F•α ⊗ kp) and let O2 = h2(F•α ⊗
kp). We let Ŵp be the formal completion of Sα along p. Here we use
subscript p instead p since Ŵp depends on p up to Aut(p). We know
Ŵp is Speck[[T∨2 ]]/(g), where g is a Kuranishi map of the obstruction
theory of Sα at p. We denote by Cp the normal cone to Ŵp in Wp �
Speck[[T∨2 ]]. The cone Cp is naturally embedded in O2 × Ŵp. Again,
the pair Cp ⊂ O2 × Ŵp only depends on the point p ∈ N, up to the
symmetry Aut(p). By the construction of the virtual moduli cycles in
[26] and in Section 2.2, this collection of cone cycles {Cp}p∈N can be
algebraicized and hence gives rise to a cycle, the virtual moduli cycle
[N]virt.
Now assume p ∈ M. Then p ∈ Rα where Rα = Sα ×N M. As

in (4.3), we let T1 = h1(Eα × kp) and O1 = h2(Eα ⊗ kp), etc. There
are two cases to consider. One is when δ : T2 → O1/2 in (4.3) is 0.
In this case T = T1 = T2, O = O1 and O2 = O1/O1/2. Further, we
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can choose the relative Kuranishi map h ∈ k[[T∨]]/(g) ⊗ O1/2 to be
ŝα, the pullback of sα via Speck[[T∨]]/(g) ∼= Ŵp → Sα. Here we have
used the canonical isomorphism O1/2 = Lα|p. Now let Xp and X̂p be
the schemes Spec k[[T∨]] and Spec[[T∨]]/(f), where f is the Kuranishi
map in (4.5). Then Xp = Wp and the cone D(p)2 is the normal cone
to Cp ×Ŵp

{ŝα = 0} in Cp. The cone D(p)2 is naturally embedded in
V̂1/2×X̂p V̂2. For the same reason, when δ is nonzero, thus surjective since
dimO1/2 = 1, the cone D(p)2 is also the normal cone to Cp×Ŵp

{ŝα = 0}
in Cp.
We are now ready to prove the lemma. First, from the discussion

before Lemma 4.3 we know the collection {D(p)2}p∈M can be algebrai-
cized. By definition, the cycle constructed based on {D(p)2} follow-
ing the basic construction in Section 2.2 is the relative virtual cycle
[M,N]virt. However, since ŝα are pullback of the section sα, the cone
D(p)2 is the normal cone to Cp ×Sα {sα = 0} in Cp. Further, since the
collection {(Lα, sα)} is the restriction of (L, s) to charts Sα, a repetition
of the proof of Lemma 4.3 shows that [M,N]virt = c1(L, s)[N]virt. Then
combined with the identity [M]virt = [M,N]virt in Lemma 4.3, we have
[M]virt = c1(L, s)[N]virt. This completes the proof of the lemma. q.e.d.

We now investigate the second case. We let N be a DM-stack with
a morphism N → X to a scheme X. For simplicity we assume X is
smooth. Let ξ : X0 −→ X be a smooth subvariety and letM be defined
by the Cartesian product

M = N ×X X0.

Then M is a substack of N. Let L over M be the pull back of the
normal bundle to X0 in X. Similar to the case just studied, there is
a canonical relative obstruction theory of M/N taking values in the
cohomology of the complex L• = [0 → OM(L)]. We now assume M
and N both have perfect obstruction theories and are compatible to
the relative obstruction theory of M/N. By the intersection theory of
DM-stacks [38], the Gysin map η![N]virt ∈ A∗M.

Lemma 4.7. Let the notation be as above. Then [M,N]virt =
η![N]virt.

Proof. The proof is similar to that of the previous lemma with slight
modification. We shall omit the proof here. q.e.d.

We now investigate the third case. We let Q be a smooth Artin
stack with k C-divisor (Li, si) and k positive integers ni, i = 1, . . . , k.
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We define N ⊂ Q be the substack defined by the vanishing of the
sections sn1

1 , . . . , snkk . Then if we let ρα :Sα → Q be a smooth chart and
let Sα = Sα ×Q N, then Sα has a natural perfect obstruction theory
taking values in the complex

F•α = [OSα(TSα|Sα) −→ ⊕iOSα(ρ∗αL⊗nii )],(4.24)

where ρα :Sα → N is the tautological morphism. We now let M be a
DM-stack over N and let Rα → M be a chart so that Rα → M → N
factor through Rα → Sα. We assume M has a perfect obstruction
theory given by {E•α, obRα}Λ, where Λ is the atlas {Rα}Λ of M. We
also assume M/N has a perfect relative obstruction theory given by
{L•α, obRα/Sα}. Finally, we assume all these obstruction theories are
compatible. Hence by Lemma 4.3 we have [M]virt = [M,N]virt.
What we are interested is to compare this cycle with the virtual

moduli cycle of the substack M0 ⊂ M defined by M0 = M ×N N0,
where N0 ⊂ Q is defined by the vanishing of the sections s1, . . . , sk.
Note that M is homeomorphic to M0. Again we assume M0 has
perfect obstruction theory so that it is compatible to the perfect ob-
struction theory of N0 and the perfect relative obstruction theory of
M0/N0. For simplicity, we only consider the case where N0 is smooth
and Codim(N0,Q) = k.

Lemma 4.8. Suppose the relative obstruction theory of M0/N0 is
induced from that of M/N. Then [M,N]virt =

(∏k
i=1 ni

)
[M0,N0]virt.

Here by the relative obstruction theory ofM/N inducing a relative
obstruction theory of M0/N0 we mean that the relative obstruction
sheaf ObM0/N0

= ObM/N ⊗OM
OM0 and the relative obstruction class

assignment obM0/N0
(ξ) = obM/N(ξ) for any triple ξ ∈ Ob(TriM0/N0

).
Proof. Without loss of generality, we can assume all ni ≥ 2 since

otherwise we can replace Q by Q ∩ {si = 0|ni = 1}. Let Sα → Q,
Sα = Sα ×Q N and let Rα → M be as before. We let (Li,α, si,α) be
the restriction of (Li, si) to Sα. Then Sα = Sα ∩ {sn1

i,α = · · · = snki,α =
0}. We let L•α and E•α be the complexes of sheaves over Rα that are
part of the (relative) obstruction theories of M/N and M as stated in
Definition 4.1. As before, we let F•α be the complex (4.24). Again, we
assume that the exact sequences (4.1) hold. We now let p ∈ Rα be any
closed point and let q ∈ Sα be the image of p. We let Ti and Oi (i = 1/2,
1, 2 or ∅) be the vector spaces defined before (4.3) associated to p and
the pair Rα/Sα. Since all ni ≥ 2, the vector space O2 is ⊕ki=1Li,α|p. Also
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we can choose the Kuranishi map gp ∈ k[[T∨2 ]] ⊗ O2 to be the germ of
s
[n]
α = (sn1

1,α, . . . , s
nk
k,α). We let W = Speck[[T2]] and let Ŵ , X and X̂ be

the schemes defined after Lemma 4.2. Then since Codim(Sα, Sα) = k
and since Sα is smooth, the cone CŴ/W (which is defined after (4.7)) is

the vector bundle O2 × Ŵ over Ŵ . In this case the corresponding germ
D(p)2, which is the normal cone to CŴ/W ×W X̂ in CŴ/W ×W X, is
CŴ/W ×Ŵ CX̂×W Ŵ/X×W Ŵ .
Now we consider the parallel situation for the pair M0 → N0. We

let S0,α = Sα ×Q N0 and let R0,α = Rα ×Q N0. We will denote by
p ∈ R0,α and q ∈ S0,α the same points p ∈ Rα and q ∈ Sα, via the
inclusion R0,α ⊂ Rα and S0,α ⊂ Sα. We then let T0,i and O0,i be the
vector spaces defined before (4.3) associated to the pair R0,α/S0,α over
the point p. By assumption, T0,2 ⊂ T2, T0,1/2 ≡ T1/2, T0 ⊂ T is a
codimension k linear subspace, O0,2 = 0 and O0,1/2 = O1/2. Thus we
have the following diagram

0 −−−→ O1/2 −−−→ O −−−→ O2 −−−→ 0∥∥∥ � �
0 −−−→ O0,1/2 −−−→ O0 −−−→ 0.

Further, we can choose the residue of h ∈ k[[T∨]]⊗O1/2 in k[[T∨0 ]]⊗O1/2 ≡
k[[T∨0,1/2]] ⊗ O0,1/2, denoted by h0, be the relative Kuranishi map of

R0,α/S0,α at p. We let W0, Ŵ0, X0 and X̂0 be the similarly defined
formal schemes associated to q ∈ S0,α and p ∈ R0,α. Note that with this
choice, the Kuranishi map g0 = 0 and Ŵ0 = W0. Hence the associated
germ D(p)0,2 is the normal cone CX̂0/X0

, which is a cycle in O0,1/2×X̂0.

Since Ŵ0 is Ŵ with the reduced scheme structure and since the
relative Kuranishi map h0 is the restriction of the Kuranishi map h to
Ŵ0, Z0 = Z×WW0 and Ẑ0 = Ẑ×ŴW0. From this we see that the cycle
D(p)2 is a multiple of the pull-back of D(p)0,2 under the projection

(O1/2 × O2)× Ẑ
proj−−−→ O0,1/2 × Ẑ

with the multiplier given by the multiplicity of Ŵ along Ŵ0, which is∏k
i=1 ni.
Based on this, we see that Ξ(M/N) is canonically isomorphic to

Ξ(M0/N0). Further, for any a ∈ Ξ(M/N) with the corresponding
a ∈ Ξ(M0/N0), a representative (Aa, Fa, ϕa) of a is also a representative
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of a. Of course their multiplicities obey ma = ma
∏
ni. Therefore

[M/N]virt =
∑

a∈Ξ(M/N)

ma ξ(a) =
∑

a∈Ξ(M0/N0)

ma

k∏
i=1

ni · ξ(a)

=

(
k∏
i=1

ni

)
[M0/N0]virt.

This proves the lemma. q.e.d.

4.3 Proof of Lemmas 3.10 and 3.11

The proof of Lemma 3.10 is similar to that of Lemma 3.11 while tech-
nically less involved. Hence we will prove Lemma 3.11 and omit the
other. The strategy to prove Lemma 3.11 is to apply Lemma 4.6 to the
case whereM =M(W0, η) and N =M(W,Γ). To this end, we need to
work our the relative obstruction theory of M(W0, η)/M(W,Γ).
Following the argument in Section 2.1, we only need to look at

the relative obstruction theory ofM(W0[n], η)st/M(W [n],Γ)st. We first
cover M(W [n],Γ)st by affine étale charts Sα → M(W [n],Γ)st. We let
(Lη,α, sη,α) be the restriction of (Lη, sη) to Sα. By definition, Rα �
Sα ×M(W [n],Γ)st M(W0[n], η)st is the subscheme of Sα defined by the
vanishing of sα. Hence Rα/Sα admits an obvious relative obstruction
theory induced by the pair (Lη,α, sη,α), as defined in the first case
in Subsection 4.2. Namely, for any ξ = (B, I, ϕ) ∈ TriRα/Sα with
ϕ :SpecB/I → Rα, the relative obstruction class is

obRα/Sα(ξ) = d(sα ◦ ϕ) ∈ Γ(Rα, Lη,α)⊗Γ(Rα) I.

Hence the relative obstruction theory of Rα/Sα takes values in the
cohomology of the complex [0 → ORα(Lη,α)]. Because Lη,α are the
restriction of a global line bundle Lη on M(W [n],Γ)st and the sec-
tions sα over Sα are the restrictions of the global section sη, the col-
lection of the relative obstruction assignments {obRα/Sα} are compat-
ible over Rαβ and thus defines a global relative obstruction theory of
M(W0[n], η)st/M(W [n],Γ)st taking values in the cohomology of

[0→ OM(W0[n],η)st(Lη)].

We now let Aα = Γ(OSα) and Aη,α = Γ(ORα). Without lose of
generality, we can assume all Sα are η-admissible (cf. Definition 3.3).
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We then form the complex of Aα-modules E•α as in (1.19) and the com-
plex of Aη,α-modules E•η,α as in (3.10), with the subscript α added to
emphasize their dependence on α. Recall that they are the respective
complexes that are part of the perfect obstruction theories of Sα and
Rα. Further, we have the exact sequence of complexes (3.11). Thus to
apply Lemma 4.6 we only need to show that the relative obstruction
theory of M(W0[n], η)st/M(W [n],Γ)st is compatible to the obstruction
theories of M(W0[n], η)st and of M(W [n],Γ)st, in the sense of Defini-
tion 4.1. Because of the exact sequence (3.11), we only need to show
that for any triple ξ = (B, I, ϕ) in TriRα/Sα we have

ζ(obRα/Sα(ξ)) = obRα(ξ).

Here ζ is the homomorphism h1(C•−1(ORα(Lη,α))) → h2(E•η,α(ORα)).
But this follows directly from the construction of the respective (rela-
tive) obstruction theories. As argued before, the relative obstruction
theory of M(W0[n], η)st/M(W [n],Γ)st descends to a relative obstruc-
tion theory of M(W0, η)/M(W,Γ) taking values in the cohomology of
the complex [0 → OM(W0,η)(Lη)], and this relative obstruction theory
is compatible to the obstruction theories of M(W0, η) and M(W,Γ).
Thus by applying the result proved in Subsection 4.2, we conclude
[M(W0, η)]virt = c1(Lη, sη)[M(W,Γ)]virt. This proves Lemma 3.11.

4.4 Proof of Lemma 3.12

We now prove Lemma 3.12. Here is our strategy. Let Mg,n be the
(Artin) stack of k-pointed genus g nodal curves and let

µ :M(W,Γ) −→ Mg,n

be the forgetful morphism. Let η = (Γ1,Γ2, I) ∈ Ω be as in Lemma 3.12
that has r ordered roots of weights µ1, . . . , µr. We will show that in the
formal neighborhood of M(W0, η) in M(W,Γ) (possibly after an étale
base change) there are divisors (Li, si) for 1 ≤ i ≤ r so that M(W0, η)
is defined by the vanishing of sµ1

1 , . . . , sµrr while M(Yrel
1 + Yrel

2 , η) is
defined by the vanishing of s1, . . . , sr. This way we can reduce the proof
of Lemma 3.12 to the situation studied in Lemma 4.8.
We now provide the detail of the proof. We first construct the desired

base change of the formal neighborhood of M(W0, η) in M(W,Γ). We
let MΓoi

be the moduli stack of pointed nodal curves (not necessary
connected) of topological type Γoi (see the definition before (2.9)). Since
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we do not impose stability condition on such curves, MΓoi
is an Artin

stack. Then for any pair (C1, C2) ∈ MΓo1
×MΓo2

we can form a new curve
C1 + C2 by gluing the pairs of the i-th distinguished marked point of
C1 and of C2 for all i = 1, . . . , r. This construction extends to families,
thus defines a (local embedding) morphism MΓo1

× MΓo2
→ Mg,k.

Definition 4.9. Let A be an Artin stack. We say B is a formal
extension of A if A is a closed substack of B and the inclusion A → B
is a homeomorphism.

Lemma 4.10. We can find a formal extension Q of MΓo1
× MΓo2

so that the morphism MΓo1
×MΓo2

→ Mg,k extends to an étale morphism
Q → Mg,k.

Proof. For schemes, this is the topological equivalence of étale mor-
phisms [30]. Note that once such extensions exist, then they are canon-
ical. The proof of the general case can be proved by applying this
topological equivalence theorem to charts of the stacks. We will leave
the details to the readers. q.e.d.

We next consider the gluing morphism

Φη :M(Yrel
1 ,Γ1)×Dr M(Yrel

1 ,Γ1) −→ M(Yrel
1 + Yrel

2 , η) ⊂ M(W,Γ).

Lemma 4.11. There is a formal extension M(W,Γ)̂ of M(Yrel
1 ,Γ1)

×DrM(Yrel
1 ,Γ1) (as DM-stack) so that the morphism Φη extends to an

étale morphism
Φ̂η :M(W,Γ)̂ −→ M(W,Γ).

Proof. The proof is similar to Lemma 4.10, and will be omitted.
q.e.d.

BecauseM(W,Γ)̂ is homeomorphic toM(Yrel
1 ,Γ1)×DrM(Yrel

1 ,Γ1),
the forgetful morphism

M(Yrel
1 ,Γ1)×Dr M(Yrel

2 ,Γ2) −→ MΓo1
× MΓo2

(4.25)

extends to M(W,Γ)̂ → Q.
Our next task is to define the PD-divisors (Li, si) on Q for i =

1, . . . , r as mentioned. We let ξ and ζ be the universal families over
Mg,k andMΓo1

×MΓo2
. We let ξnode be the natural substack of all nodal

points of the fibers of ξ. Then ξnode ⊂ ξ is a smooth divisor. On the
other hand, each fiber ζp (over p ∈ MΓo1

× MΓo2
) contains r ordered

distinguished nodes. They define r ordered distinguished sections

n1, . . . ,nr :MΓo1
× MΓo2

−→ ζ.(4.26)
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The nodal locus ζnode ⊂ ζ is the union of a smooth divisor with the
images of these r sections. We now consider the universal family ζ over
Q. Since Q → Mg,k is étale, the nodal locus ζnode is a smooth divisor
in ζ. On the other hand, since ζ|MΓo1

×MΓo2

∼= ζ, ζnode ⊂ ζnode and is a

homeomorphism. Hence each Im(ni) is an open subset in ζnode. We let
Bi ⊂ ζnode be the open substack that contains and is homeomorphic to
Im(ni). We let Bi ⊂ Q be the image stack of Bi under the projection
ζ → Q. Clearly, Bi are smooth divisors of Q. We define (Li, si) be the
C-divisor on Q so that Bi = s−1i (0).
For later application, we now give trivializations of (Li, si) on charts

of Q. let Tα → Q be any chart. Then Bi,α = Tα ×Q Bi is a smooth
divisor in Tα. Without loss of generality, we can assume that Bi,α is
defined by the vanishing of a ui,α ∈ Γ(OTα). We then choose Li,α be the
line bundle over Tα so thatOTα(Li,α) = u−1i,αOTα and let si,α ∈ Γ(Li,α) be
the constant 1. Put it differently, ei,α = u−1i,α1 is a global holomorphic
basis of Li,α while the section si,α = 1 = ui,αei,α vanishes on Bi,α.
In case ũi,α is another defining equation of Bi,α, we define (L̃i,α, s̃i,α)
similarly via a basis ẽi,α = ũ−1i,α1 and s̃i,α = ũi,αẽi,α. The transition
function is via ẽi,α = (ui,α/ũi,α)ei,α.
Now let µi be the weight of the i-th root of η. We define

N0 = {s1 = · · · = sr = 0} and N = {sµ1
1 = · · · = sµrr = 0} ⊂ Q,

(4.27)

both are substacks of Q. Clearly, N0 =MΓo1
× MΓo2

. Hence

M(Yrel
1 + Yrel

2 , η) =M(W,Γ)̂ ×Q N0.

We define
M(W0, η)et =M(W,Γ)̂ ×Q N.

Lemma 4.12. Let πQ : M(W,Γ)̂ → Q and πM : M(W,Γ)̂ →
M(W,Γ) be the tautological projections. Then we have isomorphisms of
C-divisors

π∗Q(Li, si)
⊗µi ∼= π∗M (Lη, sη).

Further, M(W0, η)et → M(W,Γ) factor through an étale M(W0, η)et →
M(W0, η).

Proof. We coverM(W,Γ)̂ by an atlas of étale charts Sα→M(W,Γ)̂
indexed by Λ. To each α ∈ Λ, we let fα :Xα → W [nα] be the pullback
of the universal family over M(W,Γ). We then cover Q by charts Tα
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indexed by the same set Λ. Without loss of generality, we can assume
that the composite of Sα → M(W,Γ)̂ → Q factors through hα :Sα →
Tα ⊂ Q and the family Xα is the pullback of the universal family ζα
on Tα. As before, we let Bi,α = Tα ×Q Bi ⊂ Tα and let ui,α be a
defining equation of Bi,α; We let (Li,α, si,α) be the restriction of (Li, si)
to the chart Tα. As mentioned, we can choose ei,α = u−1i,α1 to be a
holomorphic basis of Li,α, and hence si,α = ui,αei,α. Now we let ni,α :
Bi,α → ζα|Bi,α be the lift of the section ni in (4.26) to Bi,α. Since Q is
homeomorphic toMΓo1

×MΓo2
, such a lift exists and is unique. We then

let Ni,α = ni,α(Bi,α) and let N̂i,α be the formal completion of ζα along
Ni,α. Without loss of generality, we can assume

N̂i,α ∼= Speck[[z1, z2]]×Spec k[t] Tα.

Here Spec k[[z1, z2]] → Speck[t] is defined by t 
→ z1z2 and Tα →
Speck[t] is defined by t 
→ ui,α.
We now back to the family fα :Xα → W [nα]. Recall Xα = ζα×QSα.

We let X̂i,α be the formal completion of Xα along Ni,α ×Q Sα, which
is isomorphic to Xα ×ζα N̂i,α. By shrinking Sα if necessary, we can
assume that there is a parameterization of a neighborhood of nodes
Wα ⊂ W [nα] given by

ψα :Wα −→ Speck[w1, w2]⊗k[tlα ]
Γ(Anα+1)

for some lα ∈ [nα + 1], as in (1.1), so that the induced morphism f̂α :
X̂i,α → W [nα] factors through

f̃α : X̂i,α → Wα via f̃∗α(wj) = βj,α · zµjj , j = 1, 2.(4.28)

Now let (Lη,α, sη,α) be the restriction to Sα of (Lη, sη). By definition,
a trivialization of (Lη,α, sη,α) is given by O(Lη,α) = t−1lα OTα with the
basis εη,α = t−1lα 1 and sη,α ≡ tlαεη,α. As mentioned, a trivialization of
(Li,α, si,α) is given by O(Li,α) = u−1i,αOSα with ei,α = u−1i,α1 and si,α =
ui,αei,α. We then define an isomorphism Lη,α ∼= L⊗µii,α via

εη,α = (βα,1βα,2)e
⊗µi
i,α .

Note that since βα,1βα,2 ∈ Γ(O×
Sα
), the above identity defines an iso-

morphism Lη,α ∼= L⊗µii,α . Further, because of the relations (4.28) and
w1w2 = tlα ,

sη,α = s⊗µii,α(4.29)
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under this isomorphism. Hence it defines an isomorphism of the corre-
sponding C-divisors. It is routine to check that the so defined isomor-
phisms extend to an isomorphism of C-divisors

π∗Q(Lη, sη) ∼= π∗M (Li, si)
⊗µi .

This proves the isomorphisms of the C-divisors.
The last statement follows directly from the construction of

M(W0, η)et. q.e.d.

We now consider the pair ρ :M(W0, η)et → N. Since M(W0, η)et is
étale over M(W0, η), we can take the obstruction theory of M(W0, η)et

to be the pullback of that of M(W0, η). We now workout the relative
obstruction theory of M(W0, η)et/N and to show that it satisfies the
set up in Lemma 4.8. We will follow closely the notation developed in
the beginning of Section 4.1. For convenience, we denote M(W0, η)et

by M.
We begin with a smooth chart S of Q and the associated chart

S = S ×Q N. We let (Li, si) be the restriction of (Li, si) to S. Since
Q and hence S are smooth, the pairs (Li, si) for i = 1, . . . , r define a
natural obstruction theory of S taking values in the cohomology of the
complex

F• =
[
OS(TS) ds

[µ]−→ ⊕ri=1 OS(L⊗µii )
]
,(4.30)

as defined in the beginning of the Section 4.1. Here ds[µ] is the abbre-
viation of (dsµ1

1 , . . . , dsµrr ). Now let X be the universal family over S
and let D ⊂ X be the divisor of the marked sections of X . Then by the
deformation theory of nodal curves, there is a canonical homomorphism
of sheaves (the Kodaira map)

OS(TS) −→ Ext 1X/S(ΩX/S(D),OX ).

Next we pick an affine étale universal open R → S ×N M with ρ :R →
S the projection. Without loss of generality we can assume that the
universal family of R is of the form f : ρ∗X → W [n] for some integer
n. We now construct the standard obstruction theory of R. Since R
is a smooth chart (not necessary étale) of M, its obstruction theory
is slightly different from that defined in Section 3.1, which is for étale
charts of M.
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We begin with the construction of the complex E•η that will be part
of the obstruction theory of R. We let B = Γ(OR) with A = Γ(OS) as
before. First of all, we choose the complex F • in (1.15) to be

F 0 = 0 and F 1 = Γ(R, ρ∗TS) = Γ(OS(TS))⊗A B.

We pick a collection of charts (Uα/Vα, fα) of f indexed by Λ, as men-
tioned in the paragraph before the equation (1.17). By shrinking R
and/or make an étale base change of S, we can assume that there is a
collection of charts {Uα/Vα} of X/S indexed by the same Λ so that Vα =
R×S Vα and Uα = R×SUα. We form the modules HomU·(f∗ΩW [n], B)†,
after picking the necessary data as shown in the paragraphs before the
equation (1.17). Since we have chosen F 0 = 0, the homomorphism ζα(·)
in (1.18) is zero. The homomorphism ζαβ(·) is exactly the one defined
in (1.17). We then form the complex D•, the homomorphism δ and the
complex E•, following the definitions after Lemma 1.14, line by line ex-
cept that we replace F 0 by 0. To form the complex E•η, we shall follow
the discussion after (3.8). We let C•η be the complex defined in (3.7)
and let δ :E• ⇒ C•−1η be the homomorphism defined exactly as in (3.8).
We then let E•η be the complex defined in (3.10). It follows from the
discussion before that the obstruction theory of M induces a natural
obstruction theory of R taking values in the cohomology of the complex
E•η.
We now construct a complex F• of A-modules that is quasi-isomor-

phic to F• (in (4.30)) and a homomorphism of complexes E•η ⇒ F•.
Let i be any integer between 1 and r. We let Λi ⊂ Λ be the subset
of the indices α so that Uα → X contains the i-th distinguished nodes
of some fibers of X/S. Then the collection {Uα}α∈Λi forms a covering
of a neighborhood of the i-th distinguished nodes of the fibers of X/S
and the collection {Vα}Λi forms an étale covering of S. We let Cki =
Ck(Λi, L⊗µii ) be the Cěch complex of k-cochains of the line bundle L⊗µii

associated to the covering {Vα}Λi . The complex Cki comes with the
standard coboundary operatorCki → Ck+1

i . We define F1 = Γ(OS(TS))
and define Fk = ⊕ri=1C

k−2
i for k ≥ 2.

We next define the differential ∂k :Fk → Fk+1. Let I be the ideal
sheaf of the zero section of the total space TS and let S(2) be the sub-
scheme of TS defined by the ideal sheaf I2. Then there is a tauto-
logical morphism κ :S(2) → S characterized by the following property:
Let v ∈ TpS with Speck[t]/(t2) → TpS its associated morphism that

lifts to the morphism [v] : Speck[t]/(t2) → S
(2), then the composite



280 jun li

κ ◦ [v] : Speck[t]/(t2) → S is the tangent vector v ∈ TpS. Now let
ξ ∈ Γ(OS(TS)) be any element. We let S̃ = SpecΓ(OS) ∗ A be the
trivial extension of S by A and let θξ : S̃ → S be the composite S̃ →
S
(2) κ−→S, where S̃ → S

(2) is defined by ξ. Since θ∗ξ (s
µi
i ) ∈ Γ(θ∗ξL⊗µii )

and θ∗ξ (s
µi
i )|S ≡ 0,

d[θ∗ξ (s
µi
i )− 0] ∈ Γ(S,OS(L⊗µii )⊗ I

S⊂S̃) = Γ(S,OS(L⊗µii )).

Here I
S⊂S̃ is the ideal of S ⊂ S̃, which is isomorphic to A. Now let

ρ∗αθ∗ξ (s
µi
i ) ∈ Γ(Vα,OS(L⊗µii )) be the pullback under ρα : Vα → S. We

then define

∂1i (ξ)α = d[ρ∗αθ
∗
ξ (s

µi
i )− 0] ∈ Γ(Vα,OS(L⊗µii )), α ∈ Λi,

and define ∂1 = ⊕i∂1i . For k ≥ 1 we let ∂k :Fk → Fk+1 to be the direct
sum of the coboundary operators of C•i . Clearly, the so defined operator
∂• satisfies ∂k ◦ ∂k+1 = 0, and hence defines a complex F• = (Fk, ∂k).
Further, it follows from our construction that the complex F• is quasi-
isomorphic to the complex F• in (4.30).
We now define the promised homomorphism ϕ• : E•η ⇒ F• ⊗A B.

Recall that E1
η = Γ(OS(TS)) ⊗A B ⊕ D0 and F1 = Γ(OS(TS)). The

homomorphism ϕ1 :E1
η → F1 ⊗A B is the one induced by the identity

of Γ(OS(TS)) ⊗A B. For k ≥ 2, we notice that Ekη = Ek ⊕ Ck−2η

and Fk = ⊕ri=1C
k−2
i . The homomorphism ϕk will be induced by ϕki :

Ckη → Cki ⊗A B, which we define now. Let ξ ∈ Ckη be any element
and let (α0 . . . αk) be a (k + 1)-tuple in Λi. Then ξα0...αk is an element
in Γ(Vα0...αk , Lη). Here Lη is the restriction of Lη to R. Using the
canonical isomorphism Lη ∼= ρ∗L⊗µii , where ρ :R → S is the tautological
projection,

ξα0...αk ∈ Γ(Vα0...αk , ρ
∗L⊗µii ) = Γ(Vα0...αk , L

⊗µi
i )⊗A B.

We denote this element by ξ̃α0...αk . We define

ϕki (ξ)α0...αk = ξ̃α0...αk ∈ Γ(Vα0...αk , L
⊗µi
i )⊗A B.

This defines a homomorphism Ckη → ⊕ri=1C
k
i ⊗A B.

We claim that the so defined homomorphisms form a homomor-
phism of complexes E•η ⇒ F• ⊗A B. For this, we need to check the
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commutativity of the following diagram

Ekη
dk−−−→ Ek+1

η

ϕk
� ϕk+1

�
Fk ⊗A B ∂k−−−→ Fk+1 ⊗A B.

(4.31)

We will prove the commutativity of (4.31) for the case k = 1. The
other cases are similar and will be omitted. First, we show that (4.31)
commutes on D0 ⊂ E1

η. Let ξ ∈ D0 ⊂ E1
η be any element given by

a collection {ξα} of ξα ∈ HomUα(f∗ΩW [n],OS)†, as defined in (1.11).
Because of the relation (1.12), the composite D0 ⊂ E1

η → E2
η
ϕ2

−→F2 ⊗A
B is zero. On the other hand, by definition we have ϕ1(ξ) = 0. Hence
ϕ2(∂1(ξ)) = d1(ϕ1(ξ)) for all ξ ∈ D0.
We next check that (4.31) commutes on Γ(OS(TS)) ⊂ E1

η. We first
recall the definition of ϕ2 ◦ d1. Let ξ ∈ Γ(OS(TS)) be any element. It
determines a morphism κ̃ξ :R̃ = SpecΓ(OR)∗B → S that is the pullback
of κξ : S̃ → S via the tautological extension ρ̃ : R̃ → S̃ of ρ :R → S. We
let α ∈ Λi be any index with Uα/Vα the associated chart of the universal
family X/S and with Ũα/Ṽα its minimal extension to the family X̃/S̃.
We let Uα/Vα and Ũα/Ṽα be the corresponding pullback charts of ρ∗X/R
and ρ̃∗X̃/R̃. We then pick a local parameterization of the nodes of
Uα/Vα and its extension to Ũα/Ṽα. We let (zα,i, sα) and (z̃α,i, s̃α) be the
relevant functions associated to these parameterizations20 . We let the
parameterizations of the nodes of Uα/Vα and Ũα/Ṽα be the pull back of
those from Uα/Vα and Ũα/Ṽα. We let fα :Uα → W [n] be the restriction
of f to Uα and let f̃α : Ũα → W [n] be a predeformable extension of
fα. We let ıα : Uα → Uα, ı̃ : Ũα → Ũα, α : Vα → Vα, ̃α : Ṽα → Ṽα,
ρα :Uα → Vα and ρ̃α :Uα → Vα be the tautological projections. Then
after picking a local parameter of fα(Uα) ⊂ W [n], say (w1, w2) with
w1w2 = tlα , we have

f∗α(wα,i) = ı∗α(z
µi
α,i) · hα,i and f̃∗α(wα,i) = ı̃∗α(z̃

µi
α,i) · h̃α,i

for some hα,i ∈ Γ(O×
Uα) and their extensions h̃α,i ∈ Γ(O×

Ũα) that satisfy

hα,1hα,2 ∈ Γ(OVα) and h̃α,1h̃α,2 ∈ Γ(OṼα). Since z̃α,1z̃α,2 = s̃α, we have

f̃∗α(tlα) = (h̃α,1h̃α,2)̃ı
∗
α(s̃

µi
α ).

20By abuse of notation we will view sα as functions on Vα and on Uα via the pull
back OVα → OUα . The same convention applies to s̃α as well.
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Then

ϕ2(d1(ξ))α = d[f̃∗α(tlα)− 0]
= (hα,1hα,2)d[̃∗α(s̃

µi
α )− 0] ∈ Γ(Vα, ρ∗Lη,α ⊗ I

R⊂R̃).

Here the last relation follows because f̃α is predeformable.
As to d1 ◦ ϕ1, by definition

d1(ϕ1(ξ))α = d[s̃µiα − 0] ∈ Γ(Vα, ρ∗L⊗µii ⊗ I
S⊂S̃).

Therefore we have ϕ2(∂1(ξ))α = d1(ϕ1(ξ))α because of the isomorphism
Lη ∼= L⊗µii , (4.31), the relation tlα = (hα,1hα,2)s

µi
α and I

R⊂R̃
∼= B and

T
S⊂S̃

∼= A. This proves the commutativity of (4.31) for k = 1. The case
k ≥ 2 is similar and will be omitted.
We define Gk = ker{Ekη → Fk ⊗A B}. Since Ekη → Fk ⊗A B is

surjective, Gk is a flat OS-module. The differentials of E•η induces
differentials ofG• and the resulting complex fits into the following exact
sequence

0 =⇒ G• =⇒ E•η =⇒ F• ⊗A B =⇒ 0.

It is routine to check that for each ξ = (B′, I, ϕ0) ∈ TriS/R there
is a canonical obstruction class obR/S(ξ) ∈ h2(G• ⊗ I) to extending
ϕ0 : SpecB′/I → R to an S-morphism SpecB′ → R, and further such
assignment satisfies the requirement in Definition 4.1. Finally, we re-
mark that though the complexes G•, E•η and F• depend on the choice
of the covering {Uα/Vα} of f , they as elements in the derived cate-
gory are unique. In particular the modules (sheaves) ObR/S � h2(G•),
ObR � h2(E•η) and ObS � h2(F•) are independent of the choice of the
coverings.
We now cover N be an atlas {Sα}Ξ and for each α ∈ Ξ we pick

an open étale Rα → M ×N Sα so that {Rα}Ξ forms an atlas of M.
For each α we pick a sufficiently fine covering of its universal family
and then form the associated complexes G•

α, E
•
η,α and E•α. Here we

added the subscript α to indicate the dependence on the chart Rα/Sα.
To be consistent with the notation in Definition 4.1, we let L•α = G•

α,
E•α = E•η,α and F•α = F•α, viewed as complexes of sheaves of ORα or
OSα-modules accordingly.

Lemma 4.13. There are standard relative obstruction theories of
Rα/Sα for α ∈ Ξ taking values in the complexes L•α such that the (rel-
ative) obstruction theories {E•α, obRα}, {F•α, obSα} and {L•α, obRα/Sα}
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are compatible in the sense of Definition 4.1. Further, the so defined
obstruction theories of Rα/Sα define a relative obstruction theory of
M/N that is compatible to the obstruction theories of M and N.

Proof. The proof is routine and will be omitted. q.e.d.

Let N0 ⊂ N be as in (4.27) and let M0 =M ×N N0. By definition
M0 is an étale cover of M(Yrel

1 + Yrel
2 , η). Note that N0 is smooth. As

to M0, we endow it with the induced obstruction theory of M(Yrel
1 +

Yrel
2 , η), which is perfect since that ofM(Yrel

1 +Yrel
2 , η) is. We let [M0]virt

be the virtual moduli cycle of M0. Then Lemma 3.12 is equivalent to

m(η)[M0]virt = [M]virt ∈ A∗M.(4.32)

By Lemma 4.8, to prove this identity it suffices to show that:

1) There is a relative obstruction theory ofM0/N0 that is compatible
to the obstruction theory of M0 and N0.

2) The relative obstruction theoryM0/N0 is compatible to the rela-
tive obstruction theory of M/N.

The proof of 1) is parallel to the construction of the relative obstruc-
tion theory of M/N. The proof of 2) is immediate once the relative
obstruction theory was constructed. Since the proof is routine, we will
leave it to the readers. We state it as a lemma.

Lemma 4.14. The standard relative obstruction theory of M0/N0

is compatible to the obstruction theories of M0 and N0. Further, the
relative obstruction theory of M0/N0 is induced from the obstruction
theory of M/N.

In the end, we apply Lemma 4.8 to the pairs M0/N0 ⊂ M/N to
conclude (4.32). This completes the proof of Lemma 3.12.

4.5 Proof of Lemma 3.14

It remains to prove Lemma 3.14. Let

Φη :M(Yrel
1 ,Γ1)×Dr M(Yrel

2 ,Γ2) −→ M(Yrel
1 + Yrel

2 , η)(4.33)

be the étale morphism in (3.2). Using the Cartesian product (3.14),
we can give M(Yrel

1 ,Γ1) ×Dr M(Yrel
2 ,Γ2) a canonical obstruction the-

ory. We call such obstruction theory the obstruction theory induced
by the Cartesian product. On the other hand, since Φη is étale, the
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obstruction theory of M(Yrel
1 +Yrel

2 , η) induces an obstruction theory of
M(Yrel

1 ,Γ1)×Dr M(Yrel
2 ,Γ2) as well.

Lemma 4.15. The two obstruction theories of M(Yrel
1 ,Γ1) ×Dr

M(Yrel
2 ,Γ2), one defined by the Cartesian product and the other induced

by that of M(Yrel
1 + Yrel

2 , η), are identical.

Proof. The proof is similar to that in [26], and will be omitted. q.e.d.

We now consider the virtual moduli cycle of M(Yrel
1 ,Γ1)×Dr

M(Yrel
2 ,Γ2). Since the obstruction theory ofM(Yrel

1 ,Γ1)×DrM(Yrel
2 ,Γ2)

is induced by the Cartesian product,

[M(Yrel
1 ,Γ1)×Dr M(Yrel

2 ,Γ2)]virt

= ∆!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

)
.

On the other hand, because of Lemma 4.15 and because Φη is étale of
pure degree |Eq(η)|,

1
|Eq(η)|Φη∗∆

!
(
[M(Yrel

1 ,Γ1)]virt × [M(Yrel
2 ,Γ2)]virt

)
= [M(Yrel

1 + Yrel
2 , η)]virt.

This is exactly Lemma 3.14.
This completes the proof of the degeneration formula of the Gromov-

Witten invariants stated in the beginning of this paper.

5. Appendix

5.1 The tangent and the obstruction spaces

In this appendix, we will express the first order deformation and the
obstruction spaces of M(W,Γ) and M(Zrel,Γ) in terms of some known
cohomology groups. As a corollary, we will show that the obstruction
theories we constructed in this paper are all perfect.
Let S → M(W [n],Γ)st be an affine étale chart. As before, we denote

by f :X → W [n] be the universal family with D ⊂ X the divisor of the
ordinary marked sections. As before, we let π :X → S be the projection
and let ρ : S → An+1 be the morphism under f . By shrinking and
making an étale base change, we can assume the following holds for S:
For each l the projection induced by π

f−1(Dl)red −→ (S ×An+1 Hl)red
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is a union of rl disjoint sections σl,i : (S ×An+1 Hl)red → f−1(Dl)red for
i = 1, . . . , rl. (Note that rl could be zero.) We pick an atlas (Uα/Vα, fα)
of f indexed by Λ so that for each l and i ∈ [1, rl] there is exactly
one and only one α so that Uα ∩ Im(σl,i) �= ∅, and hence Im(σl,i) is
covered by Uα. As before, we let Λl be the collection of those α so that
Uα/Vα covers Im(σl,i) for some i. When α is of the second kind, we
let (zα,1, zα,2, sα) be the parameterization of the distinguished nodes of
Uα/Vα (cf. before Simplification 1.7). We require smαα = g∗(tl) in case
α ∈ Λl. With such assumptions and choices made, the standard log
structure of S is given by the prelog structure NS = ⊕Nl → OS given
in (1.7).
We now let E• and D• be the complexes associated to the perfect

obstruction theory of S constructed in Section 1. Let A = Γ(OS). For
simplicity, we give an ordering of Λl and thus the rl charts in Λl are
Ul,1/Vl,1, . . . ,Ul,rl/Vl,rl . We let R•l be the complex

(sml,1l,1 , . . . , s
ml,rl
l,rl

) : O⊕rl
S −→ (O⊕rl

S /OS)⊗OAn+1 OAn+1(Hl),

where O⊕rl
S /OS is the quotient of O⊕rl

S by the diagonal OS ↪→ O⊕rl
S . In

case rl = 0, we agree R•l = [A → 0]. Here the complex R•l is indexed
at [0, 1].
Recall that H1(E•) is the space of first order deformations of f while

H2(E•) is the obstruction space to deforming f .

Proposition 5.1. For any A-module I, we have the following two
exact sequences

0 −→ Ext0X (ΩX/S(D), I) −→ H0(D• ⊗A I) −→ H1(E• ⊗A I)
−→ Ext1X (ΩX/S(D), I) −→ H1(D• ⊗A I) −→ H2(E• ⊗A I) −→ 0

and

0 −→ H0(Hom(f∗ΩW [n]†/An+1† , I)) −→ H0(D• ⊗A I)
b0−→ ⊕n+1

l=1 H0
et(R

•
l ⊗OS I) δ−→H1(Hom(f∗ΩW [n]†/An+1† , I))

−→ H1(D• ⊗A I) b1−→ ⊕n+1
l=1 H1

et(R
•
l ⊗OS I) −→ 0.

Further, H i(E•) = 0 for i > 2 and H i(D•) = 0 for i ≥ 2. Here
I = I ⊗A OX .
Here ΩW [n]†/An+1† is the sheaf of log differentials of the pair of log

schemes (cf. [17, 18]). Also, the cohomology H i
et(R

•
l ) is the étale coho-
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mology of the complex of locally relatively constant sections, namely,
sheaves of OS-modules over Xet.

Proof. The first exact sequence follows directly from the construc-
tion of the complexes D• and E•. We now prove the second exact
sequence. We first construct the arrow b0. Let ξ ∈ H0(D• ⊗ I) be any
element. Then ξ is represented by {ξα} where ξα ∈ HomUα(f∗ΩW [n], I)†.
In case α ∈ Λl then

ξα = (ϕα, ηα,1, ηα,2) ∈ HomUα(f∗ΩW [n], Iα)⊕ I⊕2α , Iα = I ⊗OX OUα ,
(5.1)

following the convention in (1.10). Specifically, the η· means dwi/wi 
→
ηα,i, under the appropriate parameterization (w1, w2) of fα(Uα). Recall
that Λl is an ordered set, thus for α = i ∈ Λl we denote η(l,i) = ηα,1+ηα,2.
Then we define

b0(ξ)l = (η(l,1), . . . , η(l,rl)) ∈ A⊕rl

and then the arrow b0 is

b0(ξ) = (b0(ξ)1, . . . , b0(ξ)l).

In case rl = 0, then we pick an α ∈ Λ and define ηl = ϕα(dtl), where ϕα
is part of the ξα as in (5.1). It is direct to check that if ξ is a cohomology
class then b0(ξ)l ∈ H0

et(R
•
l ⊗ I). This defines the corresponding arrow

in the second exact sequence.
We next construct the arrowH1

et(D
•)→ H1

et(R
•). Let Σl = f−1(Dl)

⊂ X and let IΣl⊂X be the relative locally constant ideal sheaf defined
by

Γ(Uα, IΣl⊂X ) =
{
Γ(Vα,OVα) in case Uα ∩ f−1(Dl) = ∅
smαα Γ(Vα,OVα) otherwise.

Similarly, we let π−1OS be the pullback sheaf, namely Γ(Uα, π−1OS) =
Γ(Vα,OVα). Then we have the exact sequence in étale site

0 −→ IΣl⊂X −→ π−1OS −→ ⊕α∈Λl(OS/smαα OS) −→ 0

and its induced exact sequence in cohomologies (of OS-modules)
0 −→ g∗(tl)OS → OS −→ ⊕α∈Λl(OS/smαα OS) −→ H1(R•l ) −→ 0.

Now we back to the complex D•. It follows from the construction of D•

that there is a homomorphism of complexes D• → C•(Λ, IΣi⊂X ). The
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arrow b1 = ⊕n+1
l=1 b1,l. The arrow δ in the second sequence is the ordinary

connecting homomorphism. We leave it to readers to check that with
these arrows the second sequence is exact.
The vanishing result stated in Lemma 1.19 follows from these exact

sequences. q.e.d.

The tangent and the obstruction to deformation of M(Zrel,Γ) is
similar. We let S → M(Z[n]rel,Γ)st be an affine étale chart, satisfying
the similar property as in the case just studied. We let f : X → Z[n]
be the universal family with over S with D ⊂ X be the divisor of the
union of all ordinary and the distinguished marked sections. We let
(zα,1, zα,2, sα) be the parameterization of charts Uα/Vα of f as in the
previous case. We let Λl be those such that Uα ∩ f−1(Bl) �= ∅. Let E•
and D• be the complexes constructed in the Section 1 that is part of
the perfect obstruction theory of S.

Proposition 5.2. The two exact sequences in Proposition 5.1 still
hold with the sheaf ΩW [n]†/An+1† replaced by ΩZ[n]†/An†. The same van-
ishing results hold as well.

We will close this section by working out the obstruction sheaf of an
example suggested to us by E. Ionel.
Let Zrel = (Z,D) be a pair of smooth variety and a smooth divisor.

We let Γ be the graph consisting of one vertex and one leg. We assign
the weights of the vertex to be g = 1 and d = 0. Thus M(Zrel,Γ) is the
moduli of relative stable morphisms to Y from 1-pointed genus 1 curves
to Z of degree 0. Since d = 0, all f :X → Z in M(Zrel,Γ) are constant
maps. Hence M(Zrel,Γ) is isomorphic to M1,1 × Z. We now show that
its obstruction sheaf is

Ob = π∗2ΩZ(logD)
∨,(5.2)

where π2 :M1,1 × Z → Z is the second projection.
Let f0 ∈ M(Zrel,Γ) be a relative stable morphism. Since d = 0, we

can always represent f0 by a morphism f0 :X → Z[1]o, where Z[1]o =
Z[1] − D[1] ∪ Z[1]0,sing with Z[1]0,sing is the singular locus of Z[1]0.
Then Z[1]o/C∗ ≡ Z. The obstruction to deforming f0 as morphism
to Z[1]o is H1(f∗0TZ[1]o/A1) ≡ TZ[1]o/A1 |f0(X), where Z[1]o → A1 is the
tautological projection and TZ[1]o/A1 is the relative tangent bundle. We
let f :X → Z[1]o be the family overM1,1×Z[1]o so that X is the pullback
of the universal family overM1,1 while the morphism f is the composite
of the projection X → M1,1 × Z[1]o with the second projection M1,1 ×
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Z[1]o → Z[1]o. Clearly, f is the universal family of M(Z[1]rel,Γ)st.
The obstruction bundle to the moduli spaceM(Z[1]rel,Γ)st over M1,1 ×
Z[1]o is p∗2TZ[1]o/A1 , where p2 is the second projection of M1,1 × Z[1]o.
The C∗-action lifts canonically to p∗2TZ[1]o/A1 and the obstruction sheaf
of M(Zrel,Γ) is the descent of p∗2TZ[1]o/A1 . It is direct to check that
under the quotient map M1,1 × Z[1]o/C∗ ∼=M1,1 × Z, equivariant part
(p∗2TZ[1]o/A1)C

∗
is canonically isomorphic to π∗2ΩZ(logD)∨. This proves

the identity (5.2).

5.2 Local and formal predeformable morphisms

In this part we prove that formal predeformable morphisms are auto-
matically local predeformable.

Lemma 5.3. Let L̂ = (k[z1, z2] ⊗k[s] A)̂ , be as in Definition 1.2.
Suppose there are units f1, f2, g1, g2 ∈ L̂ and an integer n ≥ 1 so that
f1f2 and g1g2 ∈ Â and that zmi fi = zmi gi for i = 1, 2. Then f1 = g1 and
f2 = g2.

Proof. We let ri = fi/gi. Then zmi (ri−1) = 0 for i = 1 and 2. Recall
that elements in L̂ have unique normal form a0 +

∑
i≥1(aiz

i
1 + biz

i
2)

for ai, bi ∈ Â (cf. [23]). By the uniqueness of the normal form, the
normal form of r1 (resp. r2) must be of the form r1 = 1 +

∑
j≥1 ajz

j
2

(resp. r2 = 1 +
∑
j≥1 bjz

j
1). Then f1f2/g1g2 = r1r2 ∈ Â implies that

1 +
∑

ajz
j
2 = ε(1 +

∑
bjz

j
1)
−1 for some unit ε ∈ Â, which is impossible

unless all aj and all bj are zero. This proves the uniqueness lemma.
q.e.d.

Lemma 5.4. The notion of pure contact is independent of the
choice of the charts of the nodes of U/V.

Proof. Let φ in (1.4) and φ̃ : k[z̃1, z̃2] ⊗k[s] A → R be two charts
of the nodes of U/V. Without loss of generality we can assume that
the vanishing locus of φ(z1) and φ̃(z̃1) are identical in SpecR. Then by
the proof of [23, Lemma 2.9], ci = zi/z̃i ∈ RS and hence c1c2 ∈ AT .
Now let ϕ :k[w1, w2] → R be of pure contact with respect to the chart
φ. If ϕ(wi) = zmi hi in RS for h1, h2 ∈ RS satisfying h1h2 ∈ AT , then
ϕ(wi) = z̃mi (c

m
i hi) in RS and c

m
1 h1c

m
2 h2 ∈ AT as well. Thus ϕ is of pure

contact with respect to φ̃ as well. This proves the lemma. q.e.d.

We now state and prove the following equivalence result.
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Lemma 5.5. Let the notation be as in Definition 1.4. Then ϕ is of
pure contact if and only if it is formally of pure contact.

Proof. Clearly, if ϕ is of pure m-contact, then it is so formally. We
now prove the other direction. Assume ϕ is formally of pure m-contact.
Then there are β1 and β2 ∈ R̂ such that ϕ̂(wi) = zmi βi, where as usual
ϕ̂ : k[w1, w2] → R̂ is the homomorphism induced by ϕ. We first show
that there are f1 and f2 ∈ RS so that ϕ(wi) = zmi fi in RS for i = 1
and 2. Let x = ϕ(w1) ∈ R, then x̂ = ϕ̂(w1) ∈ zm1 R̂. Thus by [29, Thm
8.1], the residue class of x ∈ RS/(zm1 ) is (x)̂ = 0 ∈ (R/(zm1 ))̂ . Hence
x ∈ ∩m≥1ImR/(zm1 ), and by [29, Thm 8.9] there is an a ∈ R/(zm1 )
satisfying a ≡ 1 mod I such that ax = 0. Then a ∈ S and by our
assumption a is a unit in RS/(zm1 ). Hence x = 0 in RS/(zm1 ). This
proves that ϕ(w1) ∈ zm1 RS and hence there is an f1 ∈ RS such that
ϕ(w1) = zm1 f1 in RS . For the same reason, ϕ(w2) = zm2 f2 in RS for
some f2 ∈ RS .
We next prove the following induction hypothesis: For any nonneg-

ative integer k, there are g1 and g2 ∈ RS such that

zm1 f1 − zm1 g1, zm2 f2 − zm2 g2 ∈ skRS and g1g2 ∈ AT + skRS .(5.3)

Clearly, this statement is true for k = 0. We now show that this state-
ment is true for k+1 if it is true for k. Let g1 and g2 be elements in RS
satisfying (5.3) for an integer k. To carry out the induction we need to
find r1 and r2 ∈ RS so that

zmi fi − zmi (gi + ri) ∈ sk+1RS for i = 1, 2(5.4)

and

(g1 + r1)(g2 + r2) ∈ AT + sk+1RS .(5.5)

Since ϕ formally is of pure m-contact, there are units η1 and η2 ∈ R̂S
such that zmi f̂i = zmi ηi for i = 1 and 2 and η1η2 ∈ Â. Because ĝi and ηi
satisfy the relation

zmi ĝi = zmi ηi mod s
k and ĝ1ĝ2, η1η2 ∈ Â+ skR̂,

by the uniqueness Lemma 5.3, ĝi ≡ ηi mod sk. Hence

(zmi fi − zmi gi)̂ = zmi f̂i − zmi ĝi = zmi (ηi − ĝi) ∈ zmi s
kR̂.

As we argued in the existence of fi, this implies that zmi (fi − gi) ∈
zmi s

kRS .
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We now let li ∈ RS be such that zmi fi − zmi gi = zmi s
kli. We let

r1 = sk(l1 + z2h1) and r2 = sk(l2 + z1h2) with h1 and h2 ∈ RS to be
determined. Clearly, (5.4) will hold with this choice of r1 and r2. As
for (5.5), we need

(g1+r1)(g2+r2) = g1g2+sk(g1l2+g1z1h1+g2l1+g2z2h2) ∈ AT +sk+1RS .

Since g1g2 ∈ AT + skRS , we can find c ∈ RS so that g1g2 − csk ∈
AT + sk+1RS . Hence we need to find h1 and h2 in RS so that

(c+ g1l2 + g2l1) + g1h1z1 + g2h2z2 ∈ AT + sRS .

Let d = c + g1l2 + g2l1. Clearly, there are γ1 and γ2 ∈ R̂ and α ∈ AT
so that d̂ − (α+ γ1z1 + γ2z2) ∈ sRS . Hence following the argument for
the existence of fi, there are c1 and c2 ∈ RS so that d− (c1z1 + c2z2) ∈
AT + sRS . Hence the choice h1 = −c1g−11 and h2 = −c2g−12 will do the
job for (5.5). Here g1 and g2 are units since β1 and β2 are units. This
proves that for each k we can find g1 and g2 that satisfy (5.3).
Now we show that there are h1 and h2 ∈ RS as required by the

lemma. We first let M ⊂ RS be the set of those elements that are anni-
hilated by some power of s. It is an ideal, and since RS is Noetherian,
there is an N so that sNM = 0. We let g1 and g2 be the pair satisfy-
ing (5.3) for k = N + 1. In case R/M = 0 then the lemma is already
proved. Now assume R/M �= 0. We consider the ring RS/MS . Since
ϕ̂(t) = ϕ̂(w1)ϕ̂(w2) = εsm in R̂ for some unit ε ∈ R̂, RS/MS is flat
over k[t]. Now consider the homomorphism ϕ : k[w1, w2] −→ RS/MS
induced by ϕ. By [23, Prop. 2.2], it is formally of pure contact. Hence
there are h1 and h2 ∈ RS/MS so that ϕ(wi) = zmi hi in RS/MS for
i = 1 and 2. Because RS/MS is flat over k[t], ϕ1(w1)ϕ2(w2) ∈ RS/MS
implies that h1h2 ∈ RS/MS . We then apply the uniqueness Lemma
5.3 to conclude that the residue classes of hi and gi in RS/(MS , sk) are
identical. Hence we can find hi ∈ RS so that its residue class in RS/MS
and RS/(sk) are hi and gi respectively. Therefore we have ϕ(wi) = zmi hi
in RS and h1h2 ∈ AT . This completes the proof of the lemma. q.e.d.
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